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Abstract—A new airborne facility instrument for Earth sci-
ence applications is introduced. The Mineral and Gas Identifier
(MAGI) is a wide-swath (programmable up to ±42◦ off nadir)
moderate spectral resolution thermal-infrared (TIR) imaging
spectrometer that spans the 7.1- to 12.7-μm spectral window in
32 uniform and contiguous channels. Its spectral resolution en-
ables improved discrimination of rock and mineral types, greatly
expanded gas-detection capability, and generally more accurate
land-surface temperature retrievals. The instrument design arose
from trade studies between spectral resolution, spectral range, and
instrument sensitivity and has now been validated by flight data
acquired with the completed sensor. It offers a potential prototype
for future space-based TIR instruments, which will require much
higher spectral resolution than is currently available in order to
address more detailed climate, anthropogenic, and solid Earth
science questions.

Index Terms—Dyson spectrometer, imaging spectrometer, re-
mote sensing, thermal infrared (TIR).

I. INTRODUCTION

W E INTRODUCE an advanced high radiometric sensi-
tivity, moderate spectral resolution, airborne thermal-

infrared (TIR) imaging spectrometer for Earth science. The
Mineral and Gas Identifier (MAGI) spans the 7.1- to 12.7-μm
spectral region in 32 uniform contiguous channels and was
conceived as both a fundamental science tool and a test bed
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Fig. 1. MAGI wavelength bands compared with those of current Earth-orbiting
TIR imagers and the proposed HyspIRI-TIR sensor.

for validation of future space-based TIR imager concepts. In
particular, MAGI was designed to emulate and test sensor
configurations and measurement scenarios that were envisioned
to evolve for the Hyperspectral Infrared Imager (HyspIRI)
mission [1], [2].

TIR data from orbit have a long history in many Earth
science applications such as the monitoring and characteriza-
tion of incipient and active volcanic eruptions [3]–[5], drought
susceptibility in critical agricultural and ecological regions
[6]–[8], and multiscale environmental impacts of urbanization
and land-use change [9], [10], among other topics. Over the past
several decades, high spatial resolution Earth-orbiting imaging
sensors have only offered between one and five channels, and
therefore, the TIR spectral region has been primarily used for
measuring surface temperatures rather than detailed compo-
sitional analysis of solid surfaces or gases. Traditionally, the
visible/near-infrared and short-wave infrared (SWIR) regions
have been used to remotely map certain lithologies of the
Earth’s surface, particularly those of clay and carbonate min-
eralogy. However, the TIR spectral region offers the unique
ability to distinguish between most silicate, carbonate, and
sulfate minerals and many gases, which has been demonstrated
with some success using the five-band Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER [11])
TIR products [12]–[14]. Furthermore, high spectral resolution
TIR sensors have been successfully used on planetary missions
to detect numerous minerals and surficial units [15], [16]. The
MAGI sensor will therefore greatly improve the ability to dis-
criminate silicate minerals, as well as other major rock-forming

0196-2892 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



5448 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 10, OCTOBER 2015

Fig. 2. (a) Values of the NEC (see text for definition) for 64, 32, and 16 wavelength channels for 28 of 56 chemicals, ratioed to the values for 128 bands. Larger
ratios imply a less capable instrument. For most gases, the sensitivity loss from 128 to 32 channels is less than a factor of 2. (b) Median NEC ratio versus number
of channels (all chemicals). A significant penalty is incurred in reducing from 32 to 16 channels [34].

minerals (e.g., carbonates, sulfates, and phosphates), and IR-
active gas species at a spectral resolution that balances accurate
detection against data volume.

A TIR imaging spectrometer with the spectral resolution
of MAGI enables improvements in retrieved surface spec-
tral emissivity and in-scene atmospheric compensation (ISAC)
techniques that permit more accurate temperature retrievals
[17]. Fig. 1 illustrates the wavelengths of the contiguous MAGI
bands in comparison with current Earth-orbiting TIR imagers
and the proposed HyspIRI-TIR sensor. For example, accurate
surface temperature estimation is important for studies of heat
flux for evapotranspiration, assessing vulnerability to drought,
and estimating soil moisture using thermal inertia [6], [18],
[19]. In so doing, MAGI will contribute to a more complete
understanding of local-to-regional scale surface energy balance
in areas of changing land-cover and land-use patterns such as
agricultural areas at desert margins and regions undergoing
persistent deforestation or urbanization. These phenomena have
a significant impact on the water, carbon, and climate cycles
on multiple scales, and their accurate characterization is key to
the formulation of robust policy and strategies for monitoring,
predicting, and mitigating the effects of climate change.

II. PARAMETRIC TRADE ANALYSES

The MAGI sensor design conceptualization was originally
supported by a series of trade analyses between spectral reso-
lution, wavelength limits, sensor noise, and spatial resolution.
These studies used archival data that were collected with the
Spatially Enhanced Broadband Array Spectrograph System
(SEBASS) sensor [20].

A. Gas Detection

The trade between gas detection sensitivity and spectral res-
olution was accomplished against a list of 56 gases found in the

environment, either as anthropogenic pollutants or from natural
sources such as volcanoes. The matched filter gas detection
approach used has been previously described [21], [22].

Noise-equivalent contrast (NEC) was used as a measure
of relative sensitivity. Contrast is the product of the gas col-
umn density and the temperature difference between the gas
and the underlying scene. The NEC was determined using a
128-spectral-channel SEBASS scene known from previous
analysis to contain no gas plumes. Data sets were created with
64, 32, and 16 equivalent spectral channels with noise added to
simulate the levels expected for MAGI. Library reference spec-
tra were taken from existing sources [23]–[25]. Fig. 2 displays
the ratio of the computed NECs to the 128-channel NEC data
set for 28 of the 56 gases, and it also provides a summary plot
of the median NEC ratio for all gases. Species that have narrow
diagnostic spectral features (for example, ammonia, hydrogen
sulfide, and methyl bromide) suffer the greatest sensitivity loss
from reduced spectral resolution, and this performance penalty
is markedly worse for resolutions coarser than 32 channels.
The NEC ratios of only 4 of the 56 gases were significantly
worsened if the long-wavelength cutoff was moved from 13.1
to 12 μm, whereas additional 2 gases become very difficult to
detect for an 11.5-μm cutoff.

This study concluded that a 32-channel instrument would
have a sensitivity penalty of ∼60% relative to 128 channels.
Furthermore, approximately 90% of the gases examined were
detectable with a 12-μm long-wavelength cutoff.

B. Mineral Identification

The mineral mapping study used data collected by SEBASS
over Cuprite, NV, in October 2002. The Cuprite site has been
extensively used for sensor testing of mineral and rock discrim-
ination [26]–[28] because of its geological diversity and terrain
that is unobscured by vegetation. The data were processed to
remove atmospheric absorption and emission features using the
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Fig. 3. Six of the primary endmembers from the 128-channel SEBASS data for the Cuprite, Nevada data set. Their identification with minerals/rocks from the
ASTER spectral library, based on spectral shape, is noted. Identifications noted in parentheses are close, but second best, fits [34].

Fig. 4. Fits of two endmember spectra to entries in the ASTER spectral library [34].

ISAC algorithm [29] and converted from radiance to emissivity.
Endmember spectra were extracted from the emissivity imagery
using the simplex inflation method [30]. Six of these endmem-
bers displaying wide spatial distribution were used in the study
and are shown in Fig. 3.

The material type corresponding to each of these endmem-
bers was identified by comparison to spectra in the ASTER
spectral database (http://speclib.jpl.nasa.gov). Example fits be-
tween two extracted endmembers and ASTER library spectra
are shown in Fig. 4. A constrained least square regression was
used to determine the endmember composition of each pixel
in the eight data sets. The constraint was imposed that all
endmembers be detected with positive fraction. The regression
procedure gives the fractional composition for each endmember
for every pixel; however, for this paper, only the dominant end-
member was mapped. Fig. 5 shows the dominant endmember
spatial distributions for various degrees of spectral degradation.
The 32-band image shown is visually identical to the original
128-band image. In contrast, some confusion begins to occur
with respect to identification among the silicate endmembers
where the resolution is reduced to 16 spectral channels. The
degradation to the five ASTER channels results in still further
loss of identification fidelity. Note, however, that the loss of
fidelity at the ASTER level is not nearly as severe as that which
occurs in the gas detection study described previously.

A visual comparison of these results with SWIR results ob-
tained with the ASTER sensor [31] suggests broad agreement,

although no detailed comparison of our mineral identification
and distribution results with other remote sensing or in situ
measurements has been carried out for this paper.

The conclusion of this analysis is consistent with that made
by the Mars exploration teams for the miniature thermal emis-
sion spectrometer (TES) sensor on Mars Exploration Rovers
and the TES spectrometer in orbit on the Mars Global Surveyor
spacecraft for deciphering the mineralogy/lithology of Mars.
Both of these instruments have ∼45 channels in the 7.8- to
12.0-μm wavelength range [32], [33].

III. SENSOR DESIGN

The conceptual design of MAGI was informed by the para-
metric trade analyses described above, focusing on the optimum
TIR spectral resolution for achieving a majority of the science
objectives of TIR imaging sensors [34]. As we have seen, the
outcome of this exercise was a 32-channel TIR design point that
is intermediate between that of coarse-resolution multispectral
airborne TIR imagers (e.g., MASTER [35] and eMAS [36])
and the “hyperspectral” TIR imager family, such as the legacy
SEBASS [20] instrument and the current Mako [37], [38] and
HyTES [39] sensors. The MAGI design concept is therefore
easily extendable to Earth orbit [34], where it would provide an
option for enhanced performance TIR imaging capability for
future missions beyond Landsat 8 and HyspIRI.
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Fig. 5. Computed mineralogy of Cuprite as a function of the number of spectral bands using SEBASS TIR data. Each horizontal strip represents a separate flight
line [34].

A dispersive spectrometer architecture was selected because
the attendant photon efficiency advantages are more conducive
to the faster frame-rate needs of the wide-swath moderate
spectral resolution applications that MAGI is intended to ad-
dress [40], [41]. The specific configuration chosen for the
spectrometer is the Dyson design because it provides a compact
volume with low optical distortions (smile and keystone, each
< 5% of the pixel pitch) and excellent image quality, even at
low f-number. Our design modifies the original Dyson concept
by adding an aspherical “corrector” plate [42], [43], which
results in a more practical design that allows the object and
image planes to be moved away from the surface of the Dyson
lens (see Fig. 6). The optically faster design translates into a
smaller spectrometer, with a much lower optical bench cooling
power requirement, and shorter pixel integration times. Both of
these permit larger areal coverage scanning, which is crucial for
minimizing revisit times of future orbital sensors. The spherical
concave grating at the heart of the spectrometer requires a rel-
atively coarse pitch of ∼3 grooves/mm. The general principles
underlying the MAGI Dyson spectrometer design are described
in further detail elsewhere [44]. The MAGI spectrometer was
manufactured by Corning Specialty Materials to Aerospace
Corporation specifications.

MAGI is descended from a lineage of airborne TIR imagers
that use extrinsic Si : As blocked-impurity-band detector arrays
[20], [37]. However, the operating temperature for these arrays
(10 K) is beyond the current state of the art of mechanical cry-
ocooler technology in a reasonably sized package. Therefore,
in order to preclude the need for liquid cryogens and thereby
preserve the space traceability option for MAGI, system consid-
erations favored using HgCdTe for the focal plane array (FPA).
The FPA selected was a model TCM-1140 128 × 128 array
manufactured by Rockwell International (now Teledyne) with
40-μm square pixels and ∼0.8 quantum efficiency across the
MAGI spectral range. This array is capable of frame rates up

Fig. 6. MAGI Dyson spectrometer. (a) Optical prescription. The slit is normal
to the page. (b) Fully assembled: The spectrometer weighs just under 0.5 kg
and measures 11.5 cm in length.

to 15 kHz with well depths of up to 27× 106 electrons and
has a long-wavelength cutoff of 14 μm. The readout integrated
circuit is a direct-injection cell design with 32 output taps, each
handling 4 pixels × 128 pixels. In the MAGI sensor design,
only eight of these taps are used because there are only 32 rows
in the spectral dimension. The 128 pixels in the other dimension
comprise the spatial extent of the sensor.
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Fig. 7. MAGI instrument. (a) CAD model. (b) Completed instrument installed
in a DeHavilland DHC-6 Twin Otter aircraft.

The completed sensor is depicted in Fig. 7. A section cooled
to cryogenic temperatures comprises focal imaging optics, slit,
dispersive spectrometer subassembly, and FPA. A blocking
filter and cold stop near the cryostat window facilitate thermal
management and limit out-of-field background radiation flux
into the spectrometer. The cryogenic section was configured
to be independently operable to facilitate laboratory testing.
Cooling is accomplished by two Stirling free-piston cryocool-
ers (one each for the FPA and the spectrometer) manufactured
by Sunpower, Inc. These are connected to the sensor via
high-thermal-conductance flexible links manufactured by the
Space Dynamics Laboratory of Utah State University, Logan,
UT, USA.

An afocal external telescope reduces the instantaneous field-
of-view (IFOV) of the cryogenic optics and also relays the cold
pupil from inside the cryogenic section to a real (as opposed
to virtual) accessible external location in order to minimize the
size of the sensor pointing mirror and blackbody calibrators,
which are located near the external pupil. The afocal interface
between the external telescope and the cryogenic optics reduces
the sensitivity of the system to axial (defocus) and lateral mis-
alignment across the warm/cold interface. The overall sensor
architecture is modular in design, which is a particularly impor-
tant feature with regard to the fore optics, which can be readily
exchanged in order to adjust the IFOV according to the needs
of different platforms flying at a variety of altitudes. The sensor

TABLE I
MAGI PERFORMANCE PARAMETERS

can be also operated as a focal system independently of an ex-
ternal telescope, which is a convenience for laboratory testing.

MAGI utilizes a whiskbroom scanning geometry that gen-
erates a scene image by sequentially accumulating cross-track
scans, or “whisks,” perpendicular to the aircraft flight track. In
this scheme, the sensor’s 128-pixel linear field-of-view (FOV)
is continuously scanned normal to the direction of travel to
generate each whisk, with each whisk comprising up to 2800
frames (the precise frame number being user programmable),
thereby producing a 2800 pixel × 128 pixel image. The scan
mirror scans one pixel IFOV during the FPA frame time. Each
spatial pixel comprises a spectrum with 32 spectral channels.
This approach permits areal coverage rates of up to 20 km2/min
at 2-m GSD.

IV. SENSOR PERFORMANCE

The performance parameters of MAGI are summarized in
Table I. The performance measurements determine how well
the aligned spectrometer matches the optical predictions and
also determines the spectral noise behavior. The measurements
also determine wavelength smile (change in wavelength of a
spectral channel as a function of spatial pixel number), keystone
distortion (change in spatial pixel as a function of wavelength
for a point source at infinity), and stray light susceptibility
(erroneous signals caused by out-of-field sources).

A. Wavelength Grid and Smile Measurement

The calibration process implemented determines the center
wavelengths of every pixel in the array. The wavelength smile
across the array may be determined from the fitted wavelength
grid. The data required to determine this grid are separate
images of both hot and cold (ambient temperature) blackbody
targets, both with and without wavelength calibration films in
front. The calibration films are made of various thin plastics and
are NIST-certified and calibrated for transmission and absolute
wavelength. They are slightly roughened to minimize interfer-
ence fringes and are characterized at high spectral resolution.
The measured MAGI data are processed to transmission for
every pixel as follows:

τ =
HF − CF

H − C
(1)
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Fig. 8. Laboratory transmission spectra, resampled to MAGI resolution, of the two NIST-certified calibration films used for wavelength determination, and two
examples of measured MAGI spectra. The four absorption features, two per film, and their center wavelengths are indicated by arrows. The MAGI wavelength
channels that are used in the calibration process are denoted in red.

where

HF hot blackbody radiance viewed through calibration film;
CF cold blackbody radiance viewed through calibration

film;
H hot blackbody radiance;
C cold blackbody radiance.

For the MAGI calibration, two different films are used to
provide sharp spectral features spread throughout the spectral
bandpass. Fig. 8 shows the laboratory transmission spectra of
the two films used, resampled to MAGI spectral resolution, and
two examples of measured MAGI spectra. For ease of compu-
tation, the spectral resolution function for MAGI is modeled as
triangular, with maximum intensity at the center of the pixel
and falling to zero at the centers of the adjacent spectral pixels,
as predicted by the optical ray trace. Thus, the spectral response
function full width at half maximum is 1.0 pixel.

The fitting procedure proceeds in two stages. In the first
stage, for each spatial line of the focal plane, the transmission
values for the pixels that fall on each of the four absorption
features (two features per plastic film) are saved, and a non-
linear least square fitting procedure is run separately for each
of the calibration film absorption peaks. The procedure uses
three adjustable parameters to best fit the laboratory spectrum
of each peak: the wavelength of one of the channels near
the peak absorption (wavelengths of the other channels are
constrained to be an integral number of channel spacings apart);
a transmission offset; and a transmission scaling parameter.

The results of the first fitting procedure are input into a
second least square fit, which is linear in the fit coefficients.
This procedure uses the array of wavelengths from the four
fitted absorption peaks for every spatial row. The wavelength
data are fit to a wavelength grid of the form

λ = a0 + a1y + a2x+ a3xy (2)

where x is the spatial row number and y is the spectral row
number. Coefficient a0 is the starting wavelength for the array
(spatial row 0), and a1 is the wavelength dispersion between
spectral pixels. In general, coefficients a0−3 slightly change
each time the instrument is thermally cycled. The measured
value for the dispersion was within 0.06% of the target value,
indicating that accommodation measures implemented to ac-
count for the effects of cold optics (dimensional and refractive
index changes) were optimal.

Because of the “smile” wavelength distortion, the spectra of
different spatial points in the FOV are not measured at exactly
the same wavelengths. This small wavelength shift across the
FOV complicates data analysis. To overcome this difficulty,
radiance values at each pixel are interpolated using a 1-D cubic
fitting procedure to a single wavelength grid.

B. Stray Light Measurement

Quantitative testing of stray light performance was carried
out by moving a hot point source (a hot soldering iron placed
behind an iris) across the narrow dimension of the slit image
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Fig. 9. Sensor NEDT for one and three coadded frames and a frame integration
time of 280 μs. The curves represent the median value over all spatial rows.

in the far field. This measurement was completed at a single
position along the long dimension of the slit. The acquisition
conditions were such that there was a ∼300 : 1 signal-to-noise
ratio (SNR) when the point source was centered on the slit
compared with the noise on the background when it was far
away from the slit. These measurements indicated that stray
light contributions do not exceed 0.3% of the peak intensity.

C. Keystone Distortion

The stray light data may be also used to determine the
keystone distortion for the MAGI spectrometer by fitting the
measured intensity distributions to a Gaussian profile with a
nonlinear least square procedure to extract the peak center
position and width. This procedure showed that the center
positions for three different wavelengths spanning the instru-
mental bandpass (i.e., 8.2, 10.2, and 11.4 μm) are coincident to
< 0.01 pixel and the 1/e widths to within ±2%.

D. Sensor Noise Performance

The sensor noise-equivalent temperature difference (NEDT)
is assessed by computing the standard deviation of the frame-
to-frame noise while the sensor views a blackbody calibration
source. Typically, a data set consisting of 100 sequential frames
of a blackbody target is used to compute the single-frame
NEDT. Fig. 9 shows the measured NEDT for two different
instances of frame coadding. The curves are essentially un-
changed when viewing either a hot (308 K) or a cold (298 K)
blackbody, indicating that the sensor is not background limited,
which is attributable to the dominance of electronic readout
noise. To maximize the swath width, the sensor does not coadd
frames, but for higher sensitivity work, the scan mirror rate can
be slowed so that consecutive frames can be coadded, resulting
in a smaller swath width.

V. SAMPLE IMAGERY

The inaugural MAGI flight trials were conducted in
December 2011, and the sensor performed nominally during
these flights. Four primary targets were chosen based on the

Fig. 10. Atmospheric compensation spectra computed using the ISAC method
from data acquired over Salton Sea, CA, on December 9, 2011, from an altitude
of 3 km above ground level (AGL).

desire to give a representative sample of geologic, urban, and
agriculture environments. These included overflights of the
Salton Sea and Coso geothermal fields in California; Cuprite,
Nevada; the California Central Valley agricultural region; and
several urban locations within the Los Angeles Basin. The
sensor was installed in a DeHavilland Twin Otter aircraft and
flown over these targets at altitudes up to 3.8 km above mean
sea level. For the purposes of this paper, only one of these
locations (Salton Sea, CA) is discussed. MAGI data from
other sites will be treated in a follow-up science-focused paper
currently in preparation.

Validation of the airborne data proceeded in three stages:
determination of the optimum data calibration methods, at-
mospheric compensation of the data, and demonstration of
retrieval results for selected data sets. A procedure for identi-
fying and compensating for inoperative and poorly performing
pixels (both excessively noisy ones and so-called “blinkers”,
i.e., those exhibiting sporadic large signal excursions) was also
implemented.

Radiometric calibration is accomplished using two high-
emissivity blackbody calibration sources that overfill the sensor
FOV and are operated at different known temperatures. One of
these sources is controlled to a temperature representative of
the coldest targets in the scene, and the other is regulated at a
temperature slightly higher than the expected maximum scene
temperature. The FPA has very linear response over the typical
radiance range exhibited by ground targets so that two-point
(gain and offset) calibration is valid. Typically, calibration sets
are recorded both before and after each acquisition flight line.
FPA drift considerations meant that, for adequate calibration, a
given flight line was restricted to no more than 150 whisks. A
sensor NESR curve is also computed from these data.

A. Atmospheric Compensation

Atmospheric compensation of the data was accomplished us-
ing the ISAC procedure [29] adapted to the spectral resolution
of MAGI. The downwelling radiance term is ignored due to its
negligible contribution because of the cold temperature and low
water vapor content of the atmosphere for these data, as well
as the relatively high emissivity of many of the surfaces. An
example of the retrieved atmospheric compensation spectra is
shown in Fig. 10. The major effect of the compensation is at the
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Fig. 11. Airborne image of Mullet Island, Salton Sea, CA, acquired at 3 km AGL. (a) True-color visible image acquired by a boresighted DSLR camera.
(b) MAGI 10-μm thermal radiance image. (c) Spectral detection indicating the presence of evaporite minerals. Ground sample distance is 1.6 m.

Fig. 12. Two retrieved TIR spectra from the MAGI Mullet Island data con-
verted to reflectance. For each MAGI spectrum, the two best-fitting ASTER li-
brary spectra are shown. Note the discrimination of the small spectral feature at
∼ 8.0 μm and the difference in wavelength position of the primary absorption
feature at ∼ 8.8 μm in the top panel, which attest to the need for the spectral
resolution of MAGI.

shorter wavelengths at the edge of the atmospheric transmission
window.

B. Salton Sea Mineral Identification

MAGI data were acquired over Mullet Island and the ac-
tive geothermal features (33◦13′31′′ N; 115◦36′30′′ W) in the
SE portion of the hypersaline endorheic Salton Sea (Imperial
County, CA). These data were analyzed for surface spectral
features by comparing against library spectra from the ASTER
database [45]. Concurrent thermal and visible imagery of the

Fig. 13. TIR absorption spectra of ammonia at 46-nm resolution and resampled
to the resolution of MAGI (175 nm). The higher resolution spectrum is
vertically offset for clarity.

island are shown in Fig. 11, whereas Fig. 12 shows the best two
matches for four characteristic spectra indicating the predomi-
nant mineralogy. The main body of the island is encrusted with
bird guano and therefore does not match any of the expected
lithotypes (Robinson et al. [46] report that the island is volcanic
with various stages of hydrothermal alteration); however, the
low-lying wave-washed fringes of the island do yield spectral
signatures corresponding to evaporite deposits commonly asso-
ciated with highly mineralized evaporative water bodies such as
Salton Sea [47], [48].

C. Detection of Ammonia from a Geothermal Vent

In the same flight line as Mullet Island, a cluster of ac-
tive geothermal vents [49] was imaged close to the southeast
shoreline of Salton Sea. These vents emit ammonia, which had
previously been detected by other sensors in recent years [22].
The narrow diagnostic spectral features of ammonia provide
a stringent test of the MAGI spectral resolution paradigm.
The earlier ammonia detections from this site were carried out
with the 46-nm (128-channel) resolution SEBASS instrument.
Although the reduced spectral resolution of MAGI tends to
suppress the diagnostic TIR ammonia features (see Fig. 13), a
plume of ammonia was nevertheless detected near the center of
the fumarole field with an SNR of ∼3 (Fig. 14), attesting to the
high radiometric sensitivity of the MAGI sensor. This retrieval
was achieved despite a low-temperature contrast ΔT between
the surface and ambient air, which reduces the measurement
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Fig. 14. (a) 10-μm radiance image of geothermal vents near the SE edge
of Salton Sea, CA. Detected ammonia emissions are superimposed in green
with depth of hue indicating signal strength. (b) Corresponding brightness
temperature map. Sensor altitude is 3 km AGL. Ground sample distance
is 1.6 m.

sensitivity. In this instance, ΔT was estimated to be only ∼2 K,
which is considerably lower than the 10–20 K values prevailing
for the prior data collections where ammonia emission was
observed at the same location but during the spring and summer
months [22].

VI. CONCLUSION

An advanced TIR spectral imaging sensor has been built and
commissioned to address measurement requirements in support
of NASA Earth science goals, as articulated in the National
Research Council’s Earth Science Decadal Survey report [50].
The procedure employed to derive the desired performance
specifications is explained, and the end results are validated by
data collected during the inaugural field trials of the completed
instrument.

MAGI is a wide-swath moderate spectral resolution imaging
spectrometer that spans the 7.1- to 12.7-μm TIR region in
32 contiguous channels. The modified Dyson design allows
for a novel compact spectrometer with low cooling power
requirements. The spectral resolution was chosen based on the
results of several trade studies and represents a balance between
accurate mineral/gas detection, precise temperature retrievals,
and the extensive power and data requirements of hyperspectral
sensors (particularly problematic for orbital instruments). The
underlying MAGI design philosophy was validated through an
extensive field study involving surrogate data [51], [52] and
will be further examined in a paper dedicated to the MAGI
data that is currently in preparation. Initial analysis of the
MAGI TIR data clearly discriminates surface minerals, greatly
expands gas-detection capability, and more accurately retrieves
land-surface temperatures relative to the capabilities of current
multispectral TIR sensors.
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