Extracting accurate temperatures from non-contact thermal infrared radiance data (V51D-2701) Nicole R. Fontanella (nrf7@pitt.edu), Michael S. Ramsey (mramsey@pitt.edu), Rachel J. Lee (rjl20@pitt.edu) NSF

Introduction

A common method used to study active basaltic volcanism is with thermal infrared (TIR) radiance data. Temperature (T) and emissivity (ε_{λ}) are related through the **Planck Equation**:

$$\boldsymbol{B}(\lambda, T) = \varepsilon_{\lambda} \left[\left(\frac{c_1 \lambda^{-5}}{e^{(c_{2/\lambda}T)} - 1} \right) \right]$$

> A *fixed* emissivity can be assumed in order to solve for temperature. However, laboratory-based emissivity measurements show that **emissivity** is *variable* with changes in **physical state**.²

Figure 1: (**A**) Emissivity spectra of actively melting silicate glasses showing (**B**) a decrease in emissivity as samples are heated past their liquidus temperatures.

> The research presented here examines the possibility of variable emissivity in a silicate's **molten state** and the effect that has on deriving accurate surface temperature of active lava flows with fieldbased TIR cameras.

Figure 2: Active basaltic lava flow at Kilauea volcano in Hawaii on 15 July 2010 As molten material cools, a glassy crust forms which begins to fold. This image contains molten material, hot glassy crusts, and relatively cool glassy crusts in the background. (Photo: H.A. Morgan).

Significance

- > The findings of this work have implications for understanding basaltic flow emplacement, cooling, and crust formation, as well as for extracting accurate lava temperature from remote TIR data.
 - The temperature of a lava flow relates directly to parameters such as *composition*, *rheology*, and *emplacement processes*.
 - Temperature also serves as a critical input into flow cooling and propagation models used for hazard prediction.

Department of Geology and Planetary Science, University of Pittsburgh

Methodology

TIR radiance data were collected at Kilauea volcano, Hawaii (region shown in Figure 3) with a forward-looking infrared (FLIR) camera.

Figure 3: This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature image acquired on 9 Mar 2011 shows the southeast coast of the island of Hawaii, including Kilauea volcano. The red boxed area illustrates the region where a relatively hot, active lava flow is located, as well as where the FLIR data were collected.

Temperature data were analyzed along linear transects (Figures 4 and 5) using the ThermaCam Researcher Professional 2.7 software after accounting for several object parameters (Table 1).

Object Parameters			
Emissivity	Distance	Atm. Temp.	Hum.
1.00	2 M	38.9°C	32%

Table 1: In order to produce accurate temperature images, several

 parameters were either measured in the field or assumed, one of which is emissivity.¹

< 300°C

Figure 4: The FLIR data show the emplacement of a pahoehoe lava lobe, including the appearance of molten lava (yellow – white) at a breakout point until it cools to form a glassy crust (orange – pink) that begins to fold.

Figure 5: Temperature profile for the linear transect (L_1) shown in Figure 4 at an assumed emissivity of 1.0.

Emissivity was then adjusted sequentially from **1.0** to **0.6** until the temperature measured in the image matched the known lava temperature measured in the field with a thermocouple (~1140°C).

Results

- At an emissivity of 1.0, temperature along the linear transect varied between ~800 - 1050°C (**Figure 5**).
- Emissivities of **0.86** and **0.93** produced an **average** and **maximum** temperature along the transect of 1140°C, respectively (**Figure 6**).

Figure 6: Plot showing increasing temperature with decreasing emissivity. The maximum, average, and minimum temperatures for a linear transect are shown, as well as the actual flow temperature of ~1140°C (red line) measured with a thermocouple.

This suggests that the TIR temperatures in the images rose above the known lava temperature at emissivity values less than ~0.89. The average emissivity of cooled glassy Kilauea basalt is between 0.93 and 0.96. This indicates a *decrease* in emissivity occurs with a change of state, due to changes in the atomic bond structure of the melt.³

Discussion

- Basaltic lava in the field appears to display less dramatic changes between its glassy and molten states than rhyolite samples melted in the laboratory.²
- This is due to the higher melting and glass transition temperatures of basalt and the quick formation time of the crust.³
- The change in emissivity for molten rhyolite could therefore impact derived surface temperatures in a much more significant way than it would for basalts.

Conclusions

- Variations in emissivity due to a change in state observed in the laboratory are also apparent in field-based IR camera data.
- Emissivity generally decreases with an increase in temperature due to changes in the atomic bond structure with a change of state.

References

- [1] Harburger, A.M. and M.S. Ramsey. "Measuring Basaltic Flow Viscosity from Crustal Thickness." *GSA Annual Meeting*. Minneapolis. 9-12 Oct. 2011.
- [2] Lee, R.J., M.S. Ramsey and P.L. King. "Development of a New Laboratory Technique for High temperature Thermal Emission Spectroscopy of Silicate Melts." *Journal of Geophysical Research:* 118 (2013): 1-16.
- [3] Ramsey, M. S., R. J. Lee, S. W. Anderson and D. A. Crown. "Multiscale Parametric Imaging of Basaltic Lava Flows." IAVCEI Scientific Assembly. Japan, Kagoshima. 20-24 July 2013.

Acknowledgements

Funding for this research was made possible by the Petrology and Geochemistry Program of the National Science Foundation (EAR-0309631).