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Super-resolution is an image processing and analysis technique used to improve
the original (or native) spatial resolution of data. Super-resolution approaches
have commonly sacrificed radiometric accuracy for visual appeal or vice versa.
The results presented here are a significant modification and improvement of an
algorithm originally applied to the thermal infrared (TIR) data from the Earth-
orbiting Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) instrument. The algorithm has been programmed in the Interactive
Data Language (IDL) scripting but could be easily coded in other programming
languages. The primary focus of these modifications was to adapt the algorithm
for use with visible and TIR data from the Mars-orbiting Thermal Emission
Imaging System (THEMIS) instrument in addition to other improvements, such
as a user-defined Point Spread Function (PSF) using an alpha notation. In
addition, the previous requirement for an intermediate spatial/spectral resolution
dataset has been removed after determining it to be unnecessary for accurate and
visually pleasing results. This super-resolution approach is now more transparent
to the user, and provides data from the intermediate steps, which allows for more
accurate analysis of the results. The super-resolved TIR data from both the
ASTER and the THEMIS are radiometrically accurate, interpretable, reproduc-
ible and maintain an excellent qualitative appearance.
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1. Introduction

Super-resolution is a process for obtaining a spatial resolution greater than that of the
original (or native) resolution of the data. A variety of techniques that fuse the original
data with an additional higher-resolution data source have been used. In addition, super-
resolution can be performed by calculating areas of overlap between different data. The
most commonly applied technique is pan-sharpening, in which a single high-spatial
resolution channel is used to enhance multi-spectral lower-resolution data (Pohl 1999,
Zhukov et al. 1999, Aiazzi et al. 2002, Garzelli et al. 2004, Zhang 2004, Wang et al. 2005).
The Multisensor Multi-resolution Technique (MMT) (Zhukov et al. 1999) works with
multi-spectral data at both higher and lower spatial resolutions. However, in all of these
techniques a trade-off has been noted between those that are the most visually appealing
and the ones that are most radiometrically accurate (Zhukov et al. 1999). It is rare to find a
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super-resolution methodology that is both quantitatively accurate and qualitatively
acceptable. The algorithm (Tonooka 2005, Hughes and Ramsey 2010) modified and
examined within this work was developed specifically for this purpose, and with these
trade-offs in mind. It produces radiometrically accurate, interpretable and reproducible
results while maintaining a good qualitative appearance.

The super-resolution technique presented here is a significant modification of an
algorithm (Tonooka 2005) that was originally applied successfully to multi-spectral
resolution data from the Earth-orbiting Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) instrument (Yamaguchi et al. 1998). The primary focus
of these modifications was to enable the algorithm to process data from the Mars-orbiting
Thermal Emission Imaging System (THEMIS) instrument (Christensen et al. 2004) as well
as other improvements/testing. Other instruments, with higher spatial resolution in
different spectral regions than the THEMIS instrument, have shown a need for higher-
resolution Thermal Infrared (TIR) data than that provided natively by THEMIS, such as
for investigating small-scale mineralogical deposits. However, it is unlikely that any TIR
instrument with a higher spatial resolution than THEMIS will be sent to Mars in the near
future. The modified super-resolution algorithm may help meet the need for this higher-
resolution TIR data. The THEMIS instrument has five (four effective) VNIR bands
between 0.425 and 0.86 mm with a spatial resolution of either 18m/pixel; ASTER has three
bands between 0.52 and 0.86 mm with a spatial resolution of 15m/pixel. ASTER has five
TIR bands between 8.125 and 11.65 mm and a spatial resolution of 90m/pixel; THEMIS
has 10 bands (eight effective for the surface) between 6.78 and 14.88 mm with a spatial
resolution of typical 100m/pixel. Older ASTER scenes have an intermediate set of data,
with six bands between 1.6 and 2.43mm and a spatial resolution of 30m/pixel. This
instrument degraded in quality, and then produced no good data after May 2008. As a
result, ASTER is now similar to the THEMIS instrument in spatial and spectral
resolution, although the data from the THEMIS instrument is organised and processed
differently than ASTER. As a result of these changes in ASTER and the desire to super-
resolve THEMIS data, significant modification of the algorithm was necessary. These
modifications include changes to permit the algorithm to use data with only two different
spatial resolutions, while retaining the ability to make use of intermediate spatial/spectral
data if present, and to expand the range of acceptable input data for the instrument. Other
modifications included performance improvements and the use of a different clustering
method within the algorithm. Significant testing was performed to assess the impact of
these modifications and ensure that the modified algorithm produced the same results on
test data as the original method. The algorithm, as described, has been programmed in the
Interactive Data Language (IDL) scripting, but could be easily implementable in other
programming languages depending on the need/application. Previous work (Hughes and
Ramsey 2010) describes the algorithm and provides a flowchart through various steps; this
work focuses on changes from the original (Tonooka 2005).

2. Modification of the algorithm

The original technique (Tonooka 2005) is a 10-step process, in which the second five steps
use the same process as the first five steps but different input data. In the first five steps,
the algorithm uses ASTER visible/near infrared (VNIR) data to super-resolve the ASTER
shortwave infrared (SWIR) data. Steps 6–10 repeat the process to super-resolve the
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ASTER TIR data using VNIR and the newly super-resolved ASTER SWIR data. In
adapting this algorithm to apply to the current ASTER configuration, which lacks SWIR
data, and the THEMIS instruments’ two-resolution data, it was necessary to simplify the
algorithm to the first five steps. Super-resolution of the ASTER data with SWIRS bands
using the old 10-step algorithm and the SWIR data, and the new five-step algorithm, while
ignoring the SWIR data, produced identical results across multiple scenes. Changes from
the original algorithm (Tonooka 2005) were made within each step. The steps and how
they vary from the original are documented below.

2.1 Convolution with the point spread function (Step 1)

In the first step, higher resolution data are convolved with the instrument’s Point Spread
Function (PSF) to produce a dataset with the same pixel size as the lower resolution data.
The PSF describes the amount of blurring, due to contributions from the adjacent area for
each pixel, created by the instrument optical design. The PSF is instrument-specific and is
independent of the surface being imaged. In an ideal instrument, 100% of the signal sensed
within any given pixel would originate only within the area on the surface corresponding
to that pixel. In actual instruments, some percentage of the sensed signal for any given
pixel originates within the neighbouring pixels. In many instruments, the PSF is either
symmetrical or assumed to be symmetrical in both the X and Y axes. The original
algorithm defines the PSF of the ASTER instrument as a two-dimensional Gaussian, with
a value determined from pre-flight measurements. In modifying the algorithm, the PSF
specification has been converted to use the alpha notation described in Townshend et al.
(2000). This provides a more generalised approach for PSF usage, and enables application
to other instruments. A single value, �, is used to define the shape of PSF of the
instrument, with different equations used to define the percent contribution of each
neighbouring pixel; the total contribution of the pixel and the surrounding neighbour
pixels is 100% (Townshend et al. 2000). The ASTER PSF’s � is calculated to be
6.56� 10�2, based on the Gaussian equation and the specified standard deviation given in
Tonooka (2005), equivalent to 75.5% of a pixel’s signal originating from within that pixel
(Table 1).

Step 1 is implemented as three actions. First, the high-resolution image is resized to
match the number of pixels in the low-resolution image. This is accomplished using the
IDL frebin function (available from http://idlastro.gsfc.nasa.gov/), which in turn makes
use of the IDL rebin or congrid functions for image resizing. Next, the resized data are
convolved with the PSF using an IDL convolve function, from the same site. Finally, as

Table 1. The ASTER PSF used in this algorithm, based on
the Gaussian equation in (Tonooka 2005).

0.0043 0.0570 0.0043
0.0570 0.7546 0.0570
0.0043 0.0570 0.0043

Notes: This PSF is based on an alpha value of 0.065, and
shows 75.5% of the signal recorded for a pixel originates
within the spatial area of that pixel, and the rest originates
within the surrounding pixels.
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the data were in Digital Number (DN) format originally, the degraded resolution data are
rounded.

2.2 Identifying homogeneous pixels (Step 2)

The second step creates a homogeneous pixel map. The original algorithm (Tonooka 2005)
does this by comparing the degraded resolution pixels and their components (original,
high-resolution) pixels. If the standard deviation of the component pixels (in each band) is
less than a specified threshold, then degraded pixel is considered homogeneous. In
Tonooka (2005), the threshold is defined as the average of the standard deviations over the
whole image of each band. Based on this definition, the code calculates a standard
deviation for each band. Next, these values are averaged together to create the threshold
for homogeneity. The component pixel’s standard deviation is then calculated for each
band. If the greatest standard deviation is still less than the threshold value, that pixel is
marked as homogeneous. It is not possible to convolve the edge pixels, as some of the
neighbouring pixels used as input to the process are missing. As a result, all edge pixels are
assumed to be non-homogeneous. The original algorithm (Tonooka 2005) did not
explicitly define the edge pixel handling behaviour, so this assumption may be a difference
between the two.

2.3 The cluster tree (Step 3)

The third step generates a spectral tree by clustering the homogeneous pixels, and then
further clustering the co-located low-resolution data within each cluster. Clustering is a
means of grouping together the data measured in multiple ways, such as spectral bands,
such that each cluster contains members are more similar to each other than to other data.
In both the original (Tonooka 2005) and this version of the algorithm, the distance
measurement used for clustering is the Mahalanobis distance instead of the Euclidian
distance. The MD measures the difference in variance and correlation between bands of
data (Mimmack et al. 2001). The MD can be thought of as equivalent to the Euclidian
distance for multi-dimensional data, except that it takes into account the differences of
scale along each axis and discounts dimensions that are highly correlated. The original
implementation uses the MD in conjunction with the K-Means clustering algorithm to
create the cluster tree. Because the K-Means algorithm requires an a priori assumption as
to the number of clusters in the data, we have implemented the ISODATA algorithm (Ball
and Hall 1967) instead, modified to use the MD.

The ISODATA algorithm is similar to the K-Means algorithm, without requiring any
assumptions about the final number of clusters. In both cases, a number of initial cluster
centres are provided to the algorithm. For ISODATA, choosing too few cluster centres
initially will lead to a large number of clusters being split; choosing too many centres
initially will lead to a large number of clusters being joined. Either case increases the run-
time of the algorithm, and in extreme cases may prevent the algorithm from converging to
a solution in a reasonable amount of time.

In the ISODATA implementation within the modified algorithm, after the user has
defined the number of initial clusters, this value is increased by 10%. This extra 10%
improves the distribution of initial end-members throughout the entire data-space,
rather than focusing along the edges, by permitting the elimination of clusters too
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near each other. A random pixel is selected from the degraded data. This pixel becomes the
centroid for the first cluster. The MD between this pixel and every other pixel is then
calculated. The pixel with the largest MD is selected as the second centre. The third cluster
centre is the pixel with the largest combined MD to the first and second clusters; the fourth
cluster centre has the largest combined MD to the first three centres and so on. In the case
of two or more pixels having the largest value in common, the first of these is chosen. If the
MD to any existing cluster centre is 0 then that pixel is rejected as a new cluster centre,
preventing the same spectral composition from being selected multiple times.

After all potential centres have been calculated, the distances between each are
measured. The 10% additional cluster centres are removed by finding the cluster centre
pairs that are closest to one another, and removing the first member of those pairs. This
de-emphasises data variability near extreme data values, and leads to a more even
distribution of the centres across the data space while not adding significantly to the
algorithm’s processing time. After the additional centres have been removed, all data are
clustered within the ISODATA by seeding the algorithm using the remaining cluster
centres. Subsequent iterations recalculate the cluster centres based upon the values of the
data within each individual cluster.

2.4 Assignment of super-resolved values (Step 4)

During step 4, initial DN values are assigned to each super-resolved pixel. As in the
original algorithm, these values are selected from both the data tree created in Step 3 and
from nearby homogeneous pixels. The user is required to define a spatial radius, in the
number of low-resolution pixels, to check for the best fit. The algorithm finds all
homogeneous pixels within that radial distance and calculates the MD to each pixel,
resulting in the selection of the spectrum that has the lowest MD within that area. After
the best fit within the map is found, the data are then compared to the cluster tree. This is
done by finding the minimum MD between the co-located high-resolution pixel and the
high-resolution cluster centres. The associated low-resolution sub-clusters are then
compared to the original spectrum. If the minimum MD from these comparisons is less
than the MD from the map, the spectrum of the sub-cluster centre is used.

In data where three spatial resolutions are available, the MD is calculated by assigning
fractional values to the high- and middle-resolution MDs. Weighting between spectral
regions is defined by a user input value between 0 and 1. This value,W, is multiplied by the
higher-resolution MD, and 1 -W is multiplied by the intermediate-resolution MD. The
default recommended W value of 0.7 from Tonooka (2005) reflects the greater importance
given to matching the higher spatial resolution data. The MD of the intermediate data
measures differences within only the pixels co-located with the higher resolution cluster;
small differences within the limited data are magnified beyond the MD that would be
calculated over the entire data.

2.5 Radiometric correction (Step 5)

No significant changes from the original algorithm were necessary in the final step. After
allocation of spectra in the previous step, obtained values are only best-fit data. In order to
maintain radiometric accuracy, the newly super-resolved data are degraded back to the
original resolution with the PSF for comparing with the original data. A per-pixel
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correction factor is then calculated by finding the difference between the original and
degraded super-resolved data. The correction factor is allocated according to the MD of
the super-resolved pixels. Super-resolved pixels with high MD are spectrally less similar to
their source than lower MD pixels, and are therefore more likely to be incorrect, while a
super-resolved pixel with an MD of 0 is a perfect match. By allocating the correction
according to the MD, pixels that are less similar to their sources receive greater correction,
and a pixel with an MD of 0 would receive no correction as long as the adjacent pixels had
an MD value. If the radiometric correction were allocated equally across the component
super-resolved pixels, previously good pixels would be over-corrected while poorer-fitting
pixels, as compared to their source, would receive an inadequate correction. The resulting
correction is then added to the values created in Step 4.

3. Testing methodology

3.1 Datasets

Three different sets of data were used for the performance and the behaviour analysis of
the algorithm. The first set consisted of ASTER L1B data, granule id
AST_L1A.003:2006463023, acquired on 16 May 2000 over the Ishioka City, Japan
(Figure 1). These data were the same as that used in Tonooka (2005), and were chosen for
comparative purposes. The subset used for super-resolution covers an area of 9.9� 8.1 km.
Where pixel locations are specified, pixel 0, 0 in the upper left of the super-resolved area
was located at pixel 2496, 2460 of the full scene VNIR data. One significant difference
from Tonooka (2005) is that the ASTER SWIR bands were crosstalk corrected prior to
the application of the modified algorithm. ASTER SWIR bands suffer from crosstalk
contamination between detectors due to a stray light error in which incident light to band 4
propagates to other bands via multireflection (Iwasaki and Tonooka 2005). A correction
for this problem was not available at the time of the original super-resolution
implementation.

The second data-set consisted of THEMIS data I33902002 (TIR) and V33902003
(VIS), and provided coverage of a putative chloride deposit on Mars (Figure 2). This
deposit is located along the southern portion of a crater near 180.5� E, �27.0� N, in
northwestern Terra Sirenum, with the chloride unit at 180.46� E, �27.25� N. The unit
covers an area of roughly 15� 10 km. These data were converted to emissivity and
atmospherically corrected using the previously described methods (Bandfield et al. 2004,
Hughes and Ramsey 2010) prior to the application of the super-resolution algorithm.

The third set is an artificially-generated terrain, referred to as TerrGen, using an alpha
value of 1.4645� 10�1 (or 50% of the pixel energy originates from that pixel), two end-
members and a two-fold difference in the spatial scale between the high- and low-
resolution pixels. Both the high- and low-resolution data have four bands. End-member
spectra were created and selected separately for each resolution, with arbitrary unit-less
values between 0 and 1000. As the super-resolution algorithm looks only for spatially co-
located patterns within data, what the data actua� lly measures is irrelevant. The
algorithm works equally well on raw DN, radiance, emissivity or even non-spectral
measurement values, with the caveat that the end-user must ensure no other factors can
influence patterns in one data set over the other. As an example, the ASTER and THEMIS
data are both atmospherically corrected to minimise contributions from the intervening
distance.
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TerrGen pixels were allocated randomly at a low-spatial resolution, with a 30% chance
of being purely end-member 1, a 30% chance of being purely end-member 2 and a 40%
chance of being a randomly mixed pixel. This split was used to provide a sufficient number
of each possible combination for mixed pixels. In mixed pixels, each sub-pixel had an equal
chance of being either end-member. Mixed sub-pixels could have easily been created in this

Figure 1. The original data compared to super-resolved data using different alpha values for
calculation of the PSF. All images are ASTER Band 14, and are histogram matched to image A for
easy comparison. (A) The original Band 14 data, clipped to the area of super-resolved data, with a
linear 2% stretch. (B) The super-resolved product with an alpha of 0.06565 (75.5%), which is the
correct alpha value to use for ASTER and produces both the most radiometrically accurate and
clearest overall result. (C) The super-resolved product with an alpha of 0.5, or 0% of the pixel’s
energy originates from within its spatial area. (D) The super-resolved product with an alpha of 0.25
(25%). (E) The super-resolved product with an alpha of 0.14645 (50%). (F) The super-resolved
product with an alpha of 0.0 (100%).
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process as well, but only end-member pixels were used to simplify measurement and
interpretation of results. During this process, a high-resolution map and a ‘super-
resolution’ map were created. Pixels from the ‘super-resolution’ map were convolved with
the PSF for the creation of the low-resolution map, leading to a large number of possible
final spectra for any given low-resolution pixel. Five possible types of resultant spectra can
be created just within the space of the low-resolution pixel: purely end-member 1, mostly
end-member 1, mixed evenly, mostly end-member 2 and purely end-member 2. Spectra
were then modified during convolution with the defined PSF, in which half of the pixel
value is derived from the adjacent pixels. As an example of how many ways any individual
pixel’s spectrum could be modified by the surrounding pixels, ISODATA clustering of this
dataset found 245 separate clusters in less than 100 iterations rather than two
(end-members) or five (pixel composition types) that may be initially expected.

The performance of each of the five steps is determined by an user input. An initial run
was performed for each data-set, using the default values (Table 2) for all variables.
Default values were based on those provided by Tonooka (2005) for the ASTER data, and
used as a guide for the THEMIS and TerrGen data. During testing of these variations for
each step, one variable was systematically altered with all non-tested values held fixed at
their default value. Output data were then compared with each other and with data from
the initial super-resolution results of each data-set. This was done by examining the
behaviour of the super-resolution algorithm during data processing, the quality of the
output in terms of image appearance and the statistical distribution of the data as
compared to the original non-super-resolved data.

Figure 2. The original high- and low-spatial resolution THEMIS data compared to the super-
resolved data. (A) The original resolution (108m/pixel) THEMIS TIR bands 8/7/5 emissivity data
shown in RGB. (B) The original resolution (36m/pixel) THEMIS VNIR bands 4/3/2 radiance data
shown in RGB. The black areas along the top and right of the figure are regions of no data, as the
VNIR instrument has a smaller image footprint than the TIR data. (C) Super-resolved (36m/pixel)
THEMIS TIR bands 8/7/5 emissivity data shown in RGB. The black bars along the top and right
side of the figure are regions that could not be super-resolved due to a lack of co-located high
resolution data.
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3.2 Convolution with the PSF

To test the effect of incorrect alpha values on the super-resolution process, data were
super-resolved using five different alpha values. Each dataset was super-resolved with an
alpha-equivalent value to 0%, 25%, 50%, 75% and 100% of a pixel’s signal originating
from within the area of that pixel. In cases where the correct alpha value is close to one of
these values, the correct value was used instead: the ASTER data were processed with an
alpha value equivalent to 75.5% instead of 75% and the THEMIS data were processed
with an alpha value equivalent to 50.6% instead of 50%.

3.3 Identifying homogeneous pixels

Homogeneous pixels can be defined in a number of different ways. The original algorithm
(Tonooka 2005) defines a single threshold value as the average of the standard deviations
of each band for the entire image. To test the impact of other definitions, the code was
modified to test the following threshold definitions: a single value is defined as the average
of the standard deviations of the super-resolved area or area-of-interest, multiple values
with each band being compared to the standard deviation of that band across the entire
image and multiple values with each band being compared to the standard deviation of the
super-resolved area or area-of-interest. For the ASTER data, the super-resolved area
matched with that used in Tonooka (2005). For artificial data, the area-of-interest was
defined as the middle 250� 500 low-resolution pixels. For the THEMIS data, the super-
resolved area was defined as the area immediately surrounding the putative chloride
deposit.

Table 2. The default values used for variables within the super-resolution
algorithm.

Variable ASTER data THEMIS data Artificial data

Alpha 0.06565 0.1 0.14645
V_T_Distance 10 10 10
V_S_T_Distance 10 n/a n/a
Weight 0.7 n/a n/a

ISODATA Variables

Initial VIS Clusters 50 50 50
Initial SWIR Clusters 10 n/a n/a
Initial TIR Clusters 5 10 10
ChangeLimit 0.50% 0.50% 0.50%
MaxStdDev 4 4 4
MinDistance 2 2 2
MaxPairs 4 4 4
MinMembers 0.01% 0.01% 0.01%
VIS BandMax 255 0.012 1000
SWIR BandMax 255 n/a n/a
TIR BandMax 4300 1.05 1000
Limit 100 100 100

Notes: During testing, one value was allowed to vary in a systematic fashion,
whereas all other values were held fixed.
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3.4 The cluster tree

Step 3 represents the most significant change from the original algorithm (2005). There are

several user-defined values within the ISODATA process, but the two with the largest

impact on the final results are the initial number of clusters used and the maximum

number of iterations. These variables define how far the system can start from a final,

stable cluster map (not known a priori) and still reach that state. Other values, such as the

minimum number of members per cluster or the maximum number of clusters to join in

any iteration, can impact this process, but do not have the same controlling effect. As a

result, testing of step 3 was done by varying these values one at a time. The initial number

of clusters was varied between five and 1000, and the number of iterations was varied

between 10 and 10,000. The super-resolved ASTER data results were also compared with

Tonooka (2005).

3.5 Assignment of super-resolved values

The main variable impacting the result of step 4 is the radius used for searching the nearby

homogeneous pixels. By default, the program uses a radius of 10 low-resolution pixels,

which is the same value used in Tonooka (2005). Tests were performed by setting this value

to 5, 15 and 20 pixels. Data were also super-resolved using a value of 0 (all values from the

tree). This permitted the examination of the influence of the cluster-tree on the

super-resolution process.

3.6 Radiometric correction

The correction factor calculated within this step is allocated among the super-resolved sub-

pixels based upon their MD. This can be interpreted in two different ways, with both being

tested. In the first method, the difference between the original and degraded super-resolved

data was divided by the convolved MD of the super-resolved pixels, and this amount was

multiplied by the MD of each super-resolved pixel to create the correction. In the second

method, the difference between the original and degraded super-resolved data was divided

by the sum of the MD of the associated super-resolved pixels, and this amount was

multiplied by the MD of each super-resolved pixel to create the correction. An additional

third method was tested, in which just the difference between the original and degraded

super-resolved data was used as the correction.
The clearest way to illustrate the impact of the correction factor allocation can be seen

by examining a single low-resolution pixel and its associated super-resolved sub-pixels.

ASTER band 10 data from Earth is presented in DN, whereas the THEMIS band 4 data

show emissivity. Checking both data types allows a comparison of the effects of the

relative scale; ASTER DN are generally several orders of magnitude larger than their

associated MD values, THEMIS emissivity are of the same general magnitude.

The pixels whose upper left super-resolved sub-pixel was located at 240, 240 were

examined in both cases. By examining a single pixel and a single band, it is feasible to show

how the correction factor was developed, and how it was then allocated using different

methods.
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4. Results

4.1 Convolution with the PSF

The DN and the calculated calibrated radiance of the super-resolved ASTER data shows
the impact of choosing an incorrect PSF (Figure 1). If the correct alpha value is used, the
mean calibrated radiance of the super-resolved data is closest to that of the original data
compared to the other datasets. As the alpha value moves away from the correct value in
either direction, there is an increase in the mean calibrated radiance values. Similarly, the
correct PSF produced the fewest number of VNIR clusters, with 100 clusters found in
ISODATA. As the alpha value used for calculating the PSF moves away from the correct
value, a greater number of clusters are found.

The impact of an incorrect PSF on THEMIS emissivity data is less clear. All five
average image spectra are plotted on the original average image spectrum. The average
spectral difference between the data super-resolved with any PSF and the original data was
4.0� 10�5. The largest difference between the original and the super-resolved average
spectrum in any one band is 1.2� 10�3, with total spectral differences across all bands
ranging between 9.0� 10�5 and 4.0� 10�3. The TerrGen data shows similar results, with
average data values similar to the original average image spectrum.

4.2 Identifying homogeneous pixels

The threshold used for determining whether a degraded high-resolution pixel is
homogeneous or not is defined in Tonooka (2005) as the band average of the spatial
standard deviation over the whole image of each VNIR band. This was calculated as a
single value by averaging the standard deviation of each band together. For the ASTER
data, the average standard deviation of the entire scene for bands 1, 2 and 3N is 32 DN
(rounded to the nearest integer value). For the sub-scene, it is less than half that amount
(15 DN). As expected from this being an average, the threshold value is greater than the
standard deviation of at least one band in both cases. Where the threshold values are
determined by the band instead, the thresholds become 35, 25 and 37 (for the whole image)
or 12, 13 and 20 (for the sub-image) for each of the ASTER VNIR bands. The difference
between 12 DN (band 1, area of interest only) and 32 DN (the average of the standard
deviations of the entire scene) is significant; 12 DN represents less than 5% of the total
possible data range (0–255 DN), whereas 32 DN is 12.5%. The default threshold value (32
DN) identifies 82,442 pixels convolved to the intermediate spatial resolution (93% of the
scene) and 6991 pixels convolved to the low-spatial resolution (70% of the scene) as
homogeneous.

The THEMIS data had a default threshold of 1.43� 10�4 emissivity units, or 2.4% of
the data range, with the standard deviation of band 4 being one quarter and band 5 being
one half of this value. If only the area of interest is considered, this single threshold
decreases to 1.09� 10�4 emissivity, with an equivalent drop in the standard deviation
across all bands. The default value selects 74,393 pixels convolved to the lower resolution
as homogeneous, or 11% of the scene.

The difference between per-band and the single value can be most clearly illustrated
within the TerrGen artificial data. Where a single threshold value is used from the entire
image, the calculated value of 380.8 represents over one-third of the data range. As the
TerrGen data are randomly distributed, unlike a natural surface, there is no significant
difference between the threshold values of the whole image and the image subset. Ignoring
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the effect of the PSF, this does correctly select only those pixels that are purely one of the
two end-members. For those pixels in which there was an even contribution from both
end-members, three bands exceed this threshold; whereas the pixels in which the
contribution is mostly from one end-member have two bands exceeding the threshold.
However, as the impact of the PSF is considered, contributions from surrounding pixels
work to homogenise the data. As a result, the super-resolution program found 322,648
homogeneous pixels instead of the 300,000 homogeneous pixels created by TerrGen. This
represents 4.5% of the total scene being incorrectly selected.

4.3 The cluster tree

During processing of both the ASTER and the THEMIS data, a limitation within the IDL
environment was encountered. Within some operating systems, IDL array creation of over
800 megabytes (MB) is problematic, with problems commonly occurring before this size is
achieved. Within the version of IDL used for this work (32 bit), there is also a size limit of
2.0 gigabytes (GB) for an array for any operating system. There were tens of thousands of
homogeneous pixels in both data sets, and cluster assignment is done by creating a floating
point array (4 bytes per array cell) with dimensions equal to the number of clusters on one
axis and the number of homogeneous pixels on the other in order to track MD between
pixels and cluster centres. This array rapidly exceeded the memory allocation or the
memory-addressing capability of IDL, and prevented testing of very large values of the
initial number of clusters (i.e. all homogeneous pixels as their own cluster centre), and
limited the number of iterations possible for moderately large starting values.

The artificially-generated data were not examined within this test due to these memory
limitations. With over 322,000 homogeneous pixels, there was a low limit to the number of
possible clusters. An initial 500 clusters reached this limitation through splitting before 10
iterations. For any larger number of initial clusters, this limitation was reached during
array creation and before any initial cluster assignments could be made. This limitation is
implementation dependant. The algorithm would not have this issue in a different
language, or if steps were taken to allow writing of memory to disk during array creation.

Results from testing the ASTER and the THEMIS data are presented in Table 3.
In both data sets, a metastable state exists around 10 clusters, as seen in the results for five
initial end-members regardless of the number of iterations. Due to the small size, relative
to the initial starting value of the other tests, this metastable state was not encountered at
other initial values. Within 50 initial end-members and varying iterations, the default case
of 100 iterations shows the greatest number of clusters in the ASTER data, and is bordered
by fewer means on either side in the THEMIS data. In most cases, the initial number of
means and the number of iterations are both positively correlated with the final number of
clusters.

4.4 Assignment of super-resolved values

In Tonooka (2005), a circle with a radius of 10 low-resolution pixels is checked first for the
best-fit homogeneous pixel spectrum before comparing with the cluster tree. In the data
used by Tonooka (2005), this resulted in a mean MD of 1.14 and 71.8% of the super-
resolved pixels sourced from the map (Figure 3). With increasing radii, a decrease is seen in
the mean MD and the percentage sourced from the map appears to asymptotically
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approach �80%. Decreasing the radius results in a significant decrease in both fit, as
measured by average MD and percentage sourced from the map, with a radius of 0
showing 99.7% from the tree and an average MD of 2.64. The 0.3% not sourced from
the tree were pixels whose MD exceeded the default value used to indicate no fit within the
map; the same issue is present with the artificially-generated terrain but not with
the THEMIS data. The overall appearance of the image, in terms of visual appeal,
improves with an increasing radius. The artificial terrain and the THEMIS data show the
same trend in mean MD, although the artificial terrain sources entirely from the image by
a radius of 5, reflecting the relatively few true end-members present within this dataset.

4.5 Radiometric correction

Table 4 shows the distance, initial value and correction factors of each of the three
different radiometric correction methods for the ASTER data. The original low-resolution
pixel associated with these data had a value of 1205 DN, whereas the uncorrected DN
values range from 1129 to 1234. After correction, the equal allocation method has the
value closest to the original data, with a convolved value of 1204.82. As the DN values are
integers, this is rounded to 1205 DN. The weighted method using the convolved distance
of 0.5187 as the divisor to calculate the correction factor produces the next best results,
with a convolved value of 1204.71; also rounded to 1205 DN. The weighted method using
the summed distance of 18.2893 produces non-radiometrically accurate results. The
convolved and rounded value from this method produces 1190 DN.

Table 3. The initial starting number of VNIR clusters and the maximum number of ISODATA
iterations are compared to the final number of VNIR clusters.

THEMIS

Iterations

10 100 1000 10000

Initial clusters 5 10 10 10 11
50 85 118 92 142
500 534 1192 1190
1000 673 2117 2000

ASTER

Iterations

10 100 1000 10000

Initial clusters 5 10 10 10 10
50 64 100 95 98
500 249 472 528 566
1000 284 470 540 575

Notes: These two variables are the dominant factors in determining the final number of clusters.
Both show positive correlation with the final number. Missing values in the THEMIS table are due
to memory management issues.
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The results of the same tests applied to the THEMIS band 4 are shown in Table 5.
The original low-resolution pixel associated with these data had an atmospherically
corrected emissivity of 0.9766, whereas the non-corrected pixels had values ranging
between 0.9689 and 0.9770. The same pattern of correction results was seen in the ASTER
data. The equally allocated correction produced a convolved value of 0.9763, the weighted
by convolved distance correction produced a convolved value of 0.9761 and the weighted
by summed distance method produced a convolved value of 0.9737.

Figure 3. The effect of altering the radius searched within the image for an adjacent homogeneous
pixel. (A) In all three data-sets, there is a decrease of mean MD with increase in radius,
asymptotically approaching a lowest value for each data set. For the ASTER data, this appears to be
0.9, for the THEMIS data it appears to be 0.5, and for the artificial terrain it appears to be 0.02.
Better data fits have lower MD values. (B) The percentage of super-resolved pixels sourced from the
image asymptotically approaches a final value. In the natural data (Earth and Mars), this value is
less than 100%. This shows that the cluster-tree is a necessary component of the super-resolution
process, and improves the final product. However, as can be seen in a radius of 0, it is not sufficient
on its own.
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Table 4. Super-resolved pixel (240, 240) of ASTER band 10 is
traced from the initially assigned super-resolved value through each
of the three different radiometric correction methods.

ASTER distance map (M.D.)
1.2657 0.4841 0.3093 0.3374 1.4847 0.6375
0.1921 0.3466 0.3236 0.6581 0.1890 0.6772
0.2679 0.8097 0.3748 0.5881 0.4190 0.2892
0.0314 0.4584 0.5856 0.2464 0.6438 0.7273
0.4084 0.3574 0.7225 1.2173 0.6196 0.5358
0.2605 0.5037 0.1964 0.1469 0.3966 0.5775

ASTER initial values (DN)
1170 1167 1192 1195 1196 1184
1203 1192 1214 1195 1188 1173
1202 1196 1195 1213 1195 1194
1161 1196 1195 1209 1234 1192
1169 1183 1129 1205 1195 1195
1169 1170 1194 1140 1195 1129

ASTER convolution correction (DN)
44.5812 17.0522 10.893 11.8831 52.2968 22.4544
6.76696 12.2077 11.3971 23.1811 6.65795 23.8537
9.43707 28.5205 13.2033 20.7135 14.7598 10.187
1.10428 16.1467 20.6272 8.67833 22.6755 25.6179
14.3847 12.5898 25.449 42.8773 21.8264 18.8732
9.17682 17.7412 6.91888 5.17361 13.9714 20.3404

ASTER sum correction (DN)
1.2643 0.4836 0.3089 0.3370 1.4831 0.6368
0.1919 0.3462 0.3232 0.6574 0.1888 0.6765
0.2676 0.8088 0.3744 0.5874 0.4186 0.2889
0.0313 0.4579 0.5850 0.2461 0.6431 0.7265
0.4079 0.3570 0.7217 1.2159 0.6190 0.5352
0.2602 0.5031 0.1962 0.1467 0.3962 0.5768

ASTER equal correction (DN)
18.2693 18.2693 18.2693 18.2693 18.2693 18.2693
18.2693 18.2693 18.2693 18.2693 18.2693 18.2693
18.2693 18.2693 18.2693 18.2693 18.2693 18.2693
18.2693 18.2693 18.2693 18.2693 18.2693 18.2693
18.2693 18.2693 18.2693 18.2693 18.2693 18.2693
18.2693 18.2693 18.2693 18.2693 18.2693 18.2693

ASTER convolution corrected (DN)
1215 1184 1203 1207 1248 1206
1210 1204 1225 1218 1195 1197
1211 1225 1208 1234 1210 1204
1162 1212 1216 1218 1257 1218
1183 1196 1154 1248 1217 1214
1178 1188 1201 1145 1209 1149

ASTER sum corrected (DN)
1171 1167 1192 1195 1197 1185
1203 1192 1214 1196 1188 1174
1202 1197 1195 1214 1195 1194
1161 1196 1196 1209 1235 1193
1169 1183 1130 1206 1196 1196
1169 1171 1194 1140 1195 1130

(Continued)
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Table 5. Super-resolved pixel (240, 240) of THEMIS band 4 is
traced from the initially assigned super-resolved value through each
of the three different radiometric correction methods.

THEMIS distance map (M.D)
0.0623 0.0835 0.0890
0.1742 0.2030 0.1805
0.0096 0.5068 0.0704

THEMIS initial values (emissivity)
0.9696 0.9769 0.9697
0.9735 0.9770 0.9704
0.9689 0.9708 0.9731

THEMIS convolution correction (emissivity)
0.0012 0.0016 0.0017
0.0034 0.0039 0.0035
0.0002 0.0098 0.0014

THEMIS sum correction (emissivity)
0.0002 0.0002 0.0003
0.0005 0.0006 0.0005
0.0000 0.0015 0.0002

THEMIS equal correction (emissivity)
0.0041 0.0041 0.0041
0.0041 0.0041 0.0041
0.0041 0.0041 0.0041

THEMIS convolution corrected emissivity
0.9708 0.9785 0.9715
0.9769 0.9809 0.9739
0.9691 0.9807 0.9744

THEMIS sum corrected emissivity
0.9697 0.9771 0.9700
0.9740 0.9776 0.9709
0.9690 0.9723 0.9733

THEMIS equal corrected emissivity
0.9737 0.9810 0.9739
0.9776 0.9811 0.9745
0.9731 0.9750 0.9772

Notes: The original resolution pixel associated with these data has an
atmospherically corrected emissivity value of 0.9766.

Table 4. Continued.

ASTER equal corrected (DN)
1188 1185 1210 1213 1214 1202
1221 1210 1232 1213 1206 1191
1220 1214 1213 1231 1213 1212
1179 1214 1213 1227 1252 1210
1187 1201 1147 1223 1213 1213
1187 1188 1212 1158 1213 1147

Notes: The associated original resolution pixel has a value of
1205 DN.
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5. Discussion

5.1 Convolution with the PSF

The choice of an incorrect PSF can lead to the creation of radiometrically inaccurate
products during the super-resolution process, as evident in the ASTER data. The PSF is
frequently measured for instruments before launch, either directly or indirectly through
measurement of the Modulation Transfer Function (MTF). For Earth-orbiting satellites,
the PSF can also be calculated by examining images that contain long linear features, such
as walls, parallel to both image dimensions. As the calculated contribution moves away
from the correct value, an increasing DN value is seen. At larger alpha values, this was
expected; the larger alpha value indicates a decrease in the contribution from the pixel,
with a greater signal coming from the surrounding pixels. However, the radiometric
correction is applied only and entirely to the pixel, leading to an overcorrection. At smaller
than actual alpha values, the opposite process leads to the same result. During the
calculation of the amount of correction necessary to make the resultant super-resolved
product radiometrically accurate, the image is convolved with the PSF. If too little
contribution is calculated as coming from the surrounding region, the correction factor
that is calculated is too large. However, this correction factor is still split only within the
super-resolved sub-pixels. The correct alpha value is therefore critical, and occupies an
optimum for the radiometric correction process.

With the two end-member artificial data and the THEMIS data, the impact of an
incorrect PSF is negligible. In these datasets, there is a trend towards better results with an
increasingly centred PSF, or a higher percentage originating from within that pixel. The
THEMIS data has a limited dynamic range and, arguably, represents very few
end-members. This commonality between the two datasets may be a result of few
end-members. The choice of PSF may become important only with greater data diversity,
as more can be contributed from the surrounding pixels. Additional bands, or intermediate
spatial / spectral bands as in ASTER SWIR, can be used to increase data diversity
only if the surface exhibits greater spectral diversity within these added bands than in
the original data.

5.2 Identifying homogeneous pixels

The ASTER data show an extremely high percentage (93%) of homogeneous pixels at the
default value. This may be accurate, given that the scene has a significant urban
component; these pixels, although not homogeneous in the sense of being a single pure
end-member, may contain the same end-members in roughly the same percentages,
resulting in spectrally similar pixels. However, it may lead to too many pixels, relative to
the total number, being used to create the cluster-tree. The THEMIS data presents a
perhaps more accurate case, in selecting significantly fewer pixels (11%). Both scenes select
roughly the same absolute number of pixels as homogeneous; this value falls within the
range that creates good cluster-trees.

Where the ASTER and THEMIS data are compared as percentages of homogeneity,
non-intuitive values are observed. Mars is generally spectrally bland, with a surface heavily
dominated by basalt and dust (Bandfield et al. 2000, Ruff and Christensen 2002).
The Earth, in contrast, has numerous spectral end-members to cause heterogeneity. The
difference is the comparison to the average standard deviation. ASTER data, due to
the numerous end-members, has a significantly higher standard deviation relative to the
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THEMIS data. This difference is responsible for the lower percentage of homogeneous
pixels on Mars. The spectral blandness present in most of the THEMIS data sets a higher
threshold for homogeneity. A threshold choice other than standard deviation may result in
better selection in such cases.

The artificially generated terrain with two end-members is an extreme example, created
by selecting the two most dissimilar end-members from 1000 randomly created ones. As a
result, it has a single threshold value for both the image and a spatial subset of over one-
third the data range, and even the smallest threshold on a per-band basis is nearly one
quarter of the data range. This led to the incorrect selection of 22,648 non-homogeneous
pixels in the default case.

The impact of non-homogeneous pixels, selected by a threshold that is too low, reduces
the utility of the cluster-tree created in the next step. Inclusion of data from an entire scene,
rather than the subset being super-resolved, tends to produce too high a threshold value,
permitting too many pixels to be marked as homogeneous. A balance is necessary between
having too low a threshold and including non-homogeneous pixels within the cluster-tree
creation, and having too few pixels for good clustering. The best results appear to arise by
using either a per-band threshold, defined only from the area being super-resolved, or a
single threshold defined by the minimum per-band standard deviation threshold. Another
technique worth investigation in the future would be to cluster all data through some
minimal number of loops, and then using the resulting cluster sizes to help specify
homogeneous versus non-homogenous pixels. In this method, homogeneous will be near
the centre of clusters, while non-homogenous pixels would be more distant. These clusters
could then be constrained based on the cluster-size, and the results used to initialise the
next step.

5.3 The cluster tree

In Tonooka (2005), K-means clustering was used to build the cluster-tree, with 50 VNIR
clusters, 10 SWIR clusters per VNIR cluster (or 500 clusters total) and five TIR clusters
per VNIR/SWIR cluster (or 2500 clusters total). As these clusters were derived within
K-means, these numbers were invariant, and required significant knowledge of the scene
prior to clustering. ISODATA clustering used in this algorithm had the same values as the
initial number of clusters, but allows the number of clusters to vary, alternatively splitting
if they grow too large or joining of their centres become too close. As seen in Table 3, the
final number of clusters shows a strong positive correlation to both the initial number of
clusters and to the number of iterations used for clustering.

In several cases, a relatively low number of final clusters are found, with values near or
less than the initial number of clusters. This is driven by the initial end-member selection
method. Initial means are selected by picking a random starting homogeneous pixel as the
first means and then selecting those homogeneous pixels that are furthest in total MD
from the previously selected means. Because the resulting initial mean pixels will generally
be chosen from the periphery of the data space, there is a tendency towards consolidation
of clusters within the first several iterations. It is not uncommon for the number of clusters
to drop from 33% to 50% of the initial starting value. It is only after peripheral clusters
have migrated inward that splitting of clusters becomes dominant, and the number of
cluster starts to grow. Finally, where metastable states exist, such as the case for 10
end-members in both datasets, clustering will halt or return repeatedly to this state.
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This returning trend can be seen in the case of the THEMIS data with five initial end-

members and 10,000 iterations, in which the 11th cluster was a small offshoot of one of the

other clusters. Given several more iterations, it is likely that this cluster would be

eliminated as its members migrated back to the originating cluster. The formation of the

offshoot cluster was driven by a few extreme pixels, relative to the originating cluster.

There were an insufficient number of these pixels, however, to meet the minimum cluster

size, and so the cluster was not stable across multiple iterations.
This step of the algorithm is the one of the most CPU-time intensive, and can cause

significant issues for memory management. Future work will focus upon improvements to

the code in this step. These can be incorporated by making use of implementations

available in the libraries of other languages, such as C or python.

5.4 Assignment of super-resolved values

The ASTER data show a definite limit to the percentage of data sourced from the map

versus the cluster-tree. A radius of 10 produces acceptable results; an increasing radius

results in a lower mean MD, indicative of a lower fit of the model data to the original. A

radius of 10 should take less time to compute than the larger radii, and profiling of the

algorithm shows this to be the single most time-intensive step within the program,

including the data clustering. However, the amount of time added by increasing the radius

is not linear. The time to complete processing with double the radius is less than double the

original time required to complete this step. The majority of the time cost for this step is

up-front, with some additional time needed for increasing the radius.
Super-resolution of some environments may also benefit from a larger radius. The

areas in which there are dispersed homogeneous deposits, such as some putative chloride

units on Mars, a radius of 10 may not be sufficient to find those units within the map.

These units will be clustered together within the tree, and so an initial spectrum can be

selected from the tree. However, the strength and weakness of the cluster-tree is that it

averages together a large number of pixels; smaller scale spectral variability is lost. This is

helpful where trying to determine what an image end-member might be, but is less useful

where trying to provide an accurate spectrum of a specific pixel. A larger correction factor

in step 5 would be necessary as a result of the loss of small-scale spectral variability while

sourcing from the tree.
The artificial TerrGen data were created with only two end-members. Due to the

relatively large threshold value, over 33% the data range, a significant percentage of the

image was marked homogeneous and clustering resulted in 25–40 low-resolution clusters

per run. As a result, the use of the tree falls off immediately. Original super-resolved values

derive entirely from the map by a search radius of five low-resolution pixels. Where the

large numbers of ‘homogeneous’ pixels were averaged together into the clusters, they

produced centres close to the five core pixel values. However, as there were so many pixels

with different values, a closer fit to the associated high-resolution pixel was always found

within the immediate area. As the search area increases, the fit of this match improves (i.e.

mean MD decreases). The same rate of decreasing mean MD was observed in the ASTER

data. In particular, the maximum MD for a given radius had a trend of being roughly

2� the average MD of the 5 pixel smaller radius in both sets of data. This test was meant

to examine the effect of altering the radius with which to search for adjacent homogeneous
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pixels in step 4, but served as a good illustration of the problems associated with choosing
too large a threshold value in step 2.

The suggested radial value for super-resolution has been increased from 10 (proposed
in Tonooka (2005)) to 20 (based on these results). This value balances the cost of
computational time to the improvements in spectral fit, particularly for natural data.
Testing shows that the calls to the tree are necessary, as the mean MD for a purely image-
based sourcing is more than twice that of the radius-10 case within the ASTER data. The
artificial terrain data shows a similar decrease in the MD with an increase in the radius.

5.5 Radiometric correction

Although the equally weighted correction produced the most radiometrically accurate
results where the data were convolved back to the original resolution, this method is not
recommended. Ignoring the fit of the data, as measured by the MD of their original
assignment, and treating them as all equally good or bad is too simplistic an approach.
Pixels which were exact matches to their source (MD of 0) would receive just as much of a
correction as pixels that were far from their source. As a result, the previously correct
pixels would be over-corrected, and the poorer-fitting super-resolved pixels would
continue to be overcorrected. Allocating the correction factor strictly according to the
summed weight fails due to under-correction. Larger spatial scale differences between
data-sets will lead to larger under-corrections, with the only redeeming quality of this
method being that it will not over-correct. The method first used in Tonooka (2005), based
on equations 6, 7, 13, and 14 of that work, provides the best results by allocating the
correction according to the MD of the super-resolved pixels.

The correction allocations of all the three methods examined ignore the impact of
convolution with the PSF. In most cases, this leads to pixels that are radiometrically
accurate where not convolved with their surroundings, but become slightly inaccurate
where convolved. The magnitude of the inaccuracy is inversely proportional to the alpha
value used for the PSF generation. The calculation of the radiometric correction for any
given low-resolution pixel includes the contribution of uncorrected values from
neighbouring pixels to the PSF, but this value is then allocated solely among the sub-
pixels of the pixel of interest. Methods of radiometrically correcting data that take this into
account might improve the ultimate super-resolution results. Similarly, a method
such as the summed distance method, that consistently under-corrects, may be applied
multiple times. This may lead to more accurate results without the loss of the improved
spatial clarity or the risk of over-correction in other pixels at the cost of increased
computation time.

6. Conclusion

A super-resolution technique was developed for the Earth-orbiting ASTER instrument,
and presented in Tonooka (2005). Although this technique was originally developed for
just the ASTER instrument, it was modified to work with data from the Mars-orbiting
THEMIS instrument (Hughes and Ramsey 2010). In the process of implementing and
adapting the algorithm, significant changes were necessary to process the THEMIS data.
These changes have also been applied to new ASTER scenes, which no longer have SWIR
data, and found to produce equal or better results.
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The super-resolution method presented here is a five-step process, and the impact of
making alterations to each step was examined. During the first step, the impact of
choosing an incorrect PSF was shown. More accurate estimates of the PSF produced more
radiometrically accurate final products, though results from an inaccurate PSF still have
qualitative value. In step 2, the choice of threshold is seen to influence clustering results. A
threshold defined on a per-band basis or as a band-average based only on the area of
interest produces better results than the original threshold definition. The third step
clusters the data and a new approach to clustering has been implemented. ISODATA
clustering was found to be adaptable enough to recover from many poor user choices of
initial starting conditions. The most critical choices were the starting number of clusters
and the number of iterations before forcing a halt. With too few initial clusters, ISODATA
may prematurely halt or return repeatedly to a metastable state. Due to the method of end-
member selection, the ISODATA algorithm will undergo an initial reduction in the
number of clusters; a low number of permitted iterations will cause the clustering to end
during this stage. Performance issues associated with the algorithm were noted in this step,
particularly during the ISODATA assignment of homogeneous pixels to new clusters. The
fourth step is also CPU-intensive. Increasing the search radius for good matches improves
the final results at a small cost in time. The majority of the time-cost in this step is up-front
instead of scaling linearly or exponentially with the radius. Different methods of allocating
the radiometric correction in the final step were also examined; the method proposed in
Tonooka (2005) provides the best results and accounts for radiometric differences at the
super-resolved scale.

During the super-resolution processing, some performance trade-offs are necessary.
The algorithm can run more rapidly at the cost of greater memory usage, but will
encounter limits imposed both by the operating system and the programming environ-
ment. The current implementation is also limited to five or fewer bands for high-resolution
data, and 10 or fewer bands for low-resolution data due to these same memory restrictions.
Workarounds for such arbitrary limits should be examined in future work. Similarly, the
problem of determining how the radiometric correction should account for the PSF needs
to be addressed. The results produced by the current algorithm are good and interpretable,
but improvement is possible.

The modified algorithm is an improvement of the original implementation. The
algorithm has been extended to run on multiple data types, including both the THEMIS
data and atmospherically-corrected ASTER data. As part of extending the algorithm to
other data, a user-defined PSF has also been implemented, using an alpha notation. The
requirement for intermediate spatial/ spectral resolution data, provided by the ASTER
SWIR instrument in the original implementation (Tonooka 2005), has been removed after
it was determined unnecessary for radiometrically correct results. Multiple data have been
used to examine the suggested values for user input, and in some cases better default values
have been found. These new default values were found to perform better with both the
ASTER and THEMIS data. ISODATA has been used in the place of K-means to build the
cluster tree in the modified algorithm examined in this work. This replacement requires less
a priori knowledge by the user, and provides greater flexibility to the knowledgeable user.
The modified algorithm is more transparent to the user, and provides data from
intermediate steps as well as runtime output. This permits users to determine how their
final product was created and aids in tracing the propagation of incorrect input through
the algorithm. In all steps, the CPU cost of the functions has been optimised for
performance.
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The algorithm relies on a number of choices by the end user, which determine the
quality of the super-resolved data. Testing of the modifications has led to a new set of
default recommendations for these values. This default configuration produces radio-
metrically-accurate, 15m/pixel and 36m/pixel TIR data for ASTER and THEMIS,
respectively, and does so at a reasonable time-cost. Users with no insight into the
algorithm can super-resolve ASTER and THEMIS data with good results by making use
of the default values. The modified algorithm will accept other data sources for super-
resolution as well, permitting this process to be extended to other Earth and Mars data, as
well as data from other planetary surfaces. These other data sets need not be limited to the
spectral range examined within this work. Users should ensure they understand the
statistical distribution of their data prior to application of the algorithm, although the new
default recommendations will provide a good starting point for most data.
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