LECTURE #10 : Volcanic Disasters: Lava Properties & Eruption Types

Date: 17 February 2025

I. Volcano Introduction

- why study volcanoes?
 - o two main reasons:
 - hazard mitigation
 - ~ 700 million people (~ 9% of the global population) are living in harm's way of volcanic activity
 - \succ ~ 270,000 deaths in last 500 years
 - average of ~ 500 deaths/year
 - ➤ ~ 70,000 deaths since 1900
 - largest: 92,000 (Tambora, Indonesia –1815)
 - next: 36,417 (Krakatau, Indonesia 1883)
 - primary geologic process that has operated throughout Earth's history along with impact cratering
- what is a volcano?
 - manifestation at the surface by the release of a solid/liquid/gas due to internal heat processes of a planet
- two prerequisites needed for volcanic activity:
 - something to melt
 - o and a source of heat
 - o important to realize that not all volcanoes are like Hawaii (or Mt. Etna)!
- average global production of lava:
 - \circ 2 km³ per year (land)
 - equivalent to a 4,120 foot cube
 - 20 km³ per year (ocean floor)
 - divergent plate boundaries
 - o many types and styles other than Hawaii
 - water/steam eruptions (Yellowstone Nat'l Park, USA)
 - carbonate magmas (Ol Doinyo Lengai volcano, Africa)
 - very explosive volcanoes (Pinatubo volcano, Philippines)
- heat
 - \circ the heat loss by lava comes from convection, conduction, radiation
 - the latent heat of fusion
 - heat required to melt one kg of material to its melting point
 basalt = 1.96 x10⁶ (~ 2 million) Joules (J)

- by comparison, the total world energy production in 1998 was 4.0 x 10²⁰ J
- now it is: 5.7 x 10²⁰ J
 - > that could only melt about 2.1×10^{14} kg of basalt
 - > what Kilauea Volcano produces on average in just **5 hours!**

II. Physical Properties of Lava

<u>دع</u> د	<u>ctrusive</u> Basalt	<u>Intrusive</u> Gabbro	<u>Color</u>	<u>SiO2%</u> <52	<u>Temp (°C)</u> 1000-1200
0	Andesite	Diorite		52-63	950-1200
0	Dacite	Granodiorite		63-68	800-1100
0	Rhyolite	Granite		>68	700-900

- effects of volatiles
 - o volatiles are any dissolved gas or liquid composition in a magma
 - most common are: H₂O, CO₂, SO₂, CO, H₂S ...
 - \circ in general, all volatile species are lumped as one value for the melt
 - at high pressure, volatiles are in solution (no bubbles) → lowers the viscosity
 - > just like the gas in an unopened Coke bottle
 - when it is opened, pressure is released and the volatiles come out of solution (form bubbles)
 - volatile can be as high as 20% by <u>mass</u> at high pressures underground
 - however, volatiles have low molecular weights and therefore can be an even larger <u>volume</u> of the melt
 - the more volatiles in a melt, the more potential for an explosive eruption when the magma gets close to the surface!
 - Viscosity (η)
 - internal resistance to flow (strain) by a substance when subjected to shearing (stress)
 - it is the "sluggishness" of a fluid
 - o important higher the viscosity, the higher the explosive potential
 - o depends on other factors of the material, such as:
 - temperature, phenocryst/bubble content, volatile content, SiO₂ content, pressure, etc.
 - factors: silica content (SiO₂)
 - ➢ increase in SiO₂ → increase in viscosity

Si:O	<u>η (Pa*s)</u>	<u>rock type</u>
1:2	0.02	basalt
1:3	2.8	andesite
1:4	1 x 10 ⁹ (1 billion)	rhyolite
	. ,	dive ail = 0.00 (water

- <u>factors</u>: Temperature (T)
 - ➢ increase in T
 - > decrease in crystallization, # atomic bonds, hence viscosity

III. Lava Types/Composition

- basalt composition
 - dark igneous rock characterized by small (<1 mm) grains with equal proportions of plagioclase feldspar and pyroxene
 - SiO₂ from 45 to 55%
 - produced by partial melting of upper mantle material
 - in general, same as the bulk composition of the terrestrial planets (moon, Mars, Venus, etc.)
 - these lavas form *shield-shaped* volcanoes
- andesite composition
 - lava production at subduction zones
 - dominated by fluids from ocean slab driven into the overlying mantle of the continental crust
 - melting occurs when the H₂O lowers the melting point of these rocks and magma forms
 - these lavas form composite (or cone-shaped) volcanoes

- hydrous (wet) magma
 - at 90 km depth (mantle) 20 wt.% H₂O is possible in the melt
 - very "wet" andesite lavas at the surface are only ~ 3 wt.% H₂O
 - average basalts are < 0.1 wt.% H₂O
 - so, where does all the water go?
- rhyolite composition
 - also produced at subduction zones or other large volcanic centers
 - very high SiO₂ content (>70%)
 - very high H₂O content (>5%)
 - results in high viscosity ("sticky") wet magma
 - very explosive
 - \succ if the H₂O forms bubbles
 - or very thick flows
 - if the H₂O escapes before large bubbles form leading to an eruption

IV. Eruption Types/Styles

- Hawaiian Style
 - some explosive activity, mostly effusive (flows on the surface)
 - low eruption columns (fire fountains)
 - o forms spatter and cinder cones
 - o typically basalt
 - example: various Hawaiian eruptions

- Strombolian Style
 - o low ash columns, more energetic than Hawaiian
 - \circ $\,$ forms cones and sheets $\,$
 - o basalt or andesite
 - example: Hekla (Iceland), 1970, Etna (Italy), 2021
- Pelean Style
 - o collapse of a lava dome
 - \circ $\,$ large ash columns are rare
 - pyroclastic flows
 - example: Mt. Pelee (Martinique), 1902-1903
 - example: more recently at Fuego (Guatemala), 2018

- Surtseyan Style
 - o violent explosions as magma contacts seawater or groundwater
 - o low, steam-enriched smaller columns
 - o forms "tuff cones" or "tuff rings"
 - o highly fragmented ash
 - example: Surtsey (Iceland), 1965
- Plinian Style
 - high eruption ash columns (can be into stratosphere)
 - o powerful, sustained eruptions
 - typically silicic compositions (dacite, rhyolite)
 - collapse of the column forms large pyroclastic flows
 - example: Vesuvius (Italy), A.D.
 79 & Pompeii

- Ultra-Plinian Style
 extremely high ash
 - columns (> 45 km)
 - eruption forms very large craters called calderas
 - occur on average every several 1000 years
 - example: last Yellowstone eruption
 - 70,000 years ago
 - has an average eruption cycle of ~ 70,000 years
 - there have been several caldera-forming eruptions in the western US over time

