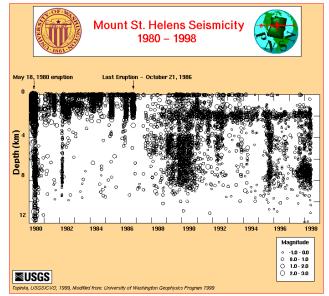

LECTURE #11: Volcanoes: Monitoring & Mitigation

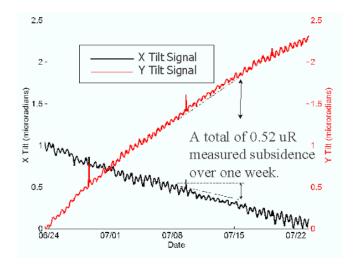
Date: 19 February 2025

I. What is volcanic monitoring?

- the continuous collection of one or more data sources for the purpose of assessing a volcano's activity state and any precursors to an eruption
- unlike EQs, volcanoes commonly have warning signs (*precursory activity*)
- different types of monitoring (several of which are interrelated):
 - \circ seismic
 - o **deformation**
 - o heat discharge
 - o gas discharge
 - water flows
 - seismic monitoring
 - network of seismometers to measure the magnitude (M), frequency (F) and distribution (position) of earthquake types under an active volcano:
 - types:
 - high-frequency EQs
 - caused by rock fracture above a magma body as it rises
 - these occur at shallow depths (0-3 km)
 - generally small M and high F
 - ➢ volcanic tremor
 - caused by magma movement in the conduit as well as the formation of gas bubbles in the magma
 - causes long-period EQs
 - lower depth than high-frequency EQs
 - A-seismic zone
 - region of no EQs
 - could define a larger magma storage area (no brittle rocks to fracture, no earthquakes)


- changes in the patterns are important
 - example: if a volcanic tremor started to increase and move toward the surface, and then shallow, high frequency EQs increased, what could that tell you?

II. Example: Mt. St. Helens, Washington



October 1, 2004 eruption

III. Volcanic Monitoring (continued)

- deformation
 - measurement of changes in the volcano's shape due to increasing pressures and/or the presence of new magma
 - o how?
 - tilt meters:
 - highly sensitive liquid-filled tubes many meters long (old tech) and electronic systems (newer tech)
 - can detect changes in slope as small as 1mm over 1km distance
 - one of the oldest monitoring techniques
 - > not used as often on stratovolcanoes (more common in Hawaii)

- laser sighting:
 - precise measurements of the distance between a laser base station and a reflective target
 - targets are placed on the volcano and observations are made from a safe distance
 - if distance gets shorter with time, the volcano is inflating
- global positioning system (GPS):
 - technique that uses satellite broadcasts to precisely locate the receiver's location and elevation
 - a series of GPS receivers on a volcano can record very small changes in inflation and lateral movement (similar to laser sighting)
- heat flow
 - volcanoes can begin to heat up days to months before an eruption
 - soil and water (groundwater and surface water) temperatures can be monitored
 - o how??
 - direct measurement
 - using probes
 - can be dangerous for the volcanologist
 - indirect measurements
 - > radiant heat can be measured from a distance
 - using a hand-held camera for short distances (< 5km)
 - > using a more sensitive device flown in an aircraft or a satellite
- volcanic gas monitoring
 - chemistry of the volcanic gas can be used to determine the composition of the magma and the likelihood of an eruption
 - for example, certain gases exsolve (are released) from the magma at different depths
 - the percentage of these and their chemistry can change with time before an eruption

- o how??
 - direct measurement
 - volcanologists capture gases emitted from:
 - > vents
 - ➢ fumaroles
 - lakes
 - ≻ soil
 - can be very dangerous
 - indirect measurements
 - satellite, plane, and ground measurements
 - certain gases are easily detectable (SO₂, H₂, HF)
 - others are not (H₂O, CO₂, CO)
 - example: correlation spectrometer (COSPEC) is used to detect SO₂ by looking at UV light passing through the plume

direct measurements

direct measurements (COSPEC)

- COSPEC (older) and UV or thermal IR cameras (newer) can be mounted on a plane, helicopter, vehicle, or positioned on the ground
- hydrologic monitoring
 - o lahar hazards (immediately after an eruption)
 - long-term threat of sediment transport/erosion and increased flooding (months to years after an eruption)
 - o how??
 - direct measurements
 - stream gauges
 - mapping
 - indirect measurements
 - > acoustic-flow monitor (AFM) stations
 - ➢ rainfall meters

IV. Volcano Hazard Mitigation

- mitigation:
 - activities, processes, or procedures designed to reduce and/or eliminate the threats of volcanic hazards
 - important to remember that mitigation is different than monitoring
 - however, monitoring is necessary for eventual mitigation
- different categories:
 - physical structures/effort
 - public education
 - o use of modern technologies

- physical structures:
 - lava diversion
 - use of permanent or temporary structures to keep the lava from advancing into a town or structure
 - works because of the slow moving nature of most lava flows
 - > only is effective sometimes and then only on a small scale
 - > large, fast flows will quickly overtop any man-made structure
 - > used semi-successfully in the 1983 eruption of Mt. Etna
 - within a month the flow was 6.5 km long threatening 3 towns
 - rubble barrier about 10 m high, 30 m wide & 400 m long
 - total cost = \$3 million (potentially saved ~ \$5-25 million)
 - eventually worked, except that the lava got diverted into another town and destroyed it!
 - water cooling
 - rapid cooling of the flow front using cold water in order to strengthen the lava and form a natural barrier
 - used in Iceland in 1973 to try to possibly stop a flow from closing off and important harbor
 - used north Atlantic seawater for days
 - some were convinced that the flow was stopping anyway and that the water did very little
 - lahar diversion
 - use of Sabo dams
 - common in Japan and Indonesia
 - structures designed to divert lahars from populated areas
 - or to strain out large boulders which would be the most damaging

- o public education:
 - can be critical in reduction of the risks
 - needed in poorer countries where the population is high, and the information dissemination is low
 - needed also in wealthier countries where the recurrence interval is large and therefore the perceived threat from volcanoes is not understood
 - how ??
 - begin training early (Japan does this for grade school kids living in hazard-prone areas)
 - continue public education/drills/training in those areas (especially before and during a hazard)
 - > increase funding for monitoring at hazardous volcanoes
 - eventually produce a geologic and hazards map for the volcano and the surrounding areas
 - have the local towns integrate those reports into their operating plan