LECTURE #12: Landslide Types & Ground Collapse

Date: 21 February 2024

I. Landslides

- wide-spread hazard: global reach
 - o affects coastal and inland locations
 - urban and rural populations
 - can be initiated by other hazards
 - volcanic eruptions (lahars, volcanic landslides)
 - severe storms (erosion of cliffs)
 - tsunamis
 - earthquakes
 - can be initiated by human activity
 - road cuts
 - skiing (snow avalanches)
- Deadly in Pittsburgh's history ...
 - o In 1942, a rock fall buried a bus near Aliquippa, killing 22 people on board
 - In 1951, excavators for a new office building made an eight-foot deep cut at the base of a hill along Island Avenue in Stowe, triggering a 500-foot wide landslide that destroyed six houses, covered the road and dislocated a streetcar line and various utility lines
 - In 1983, a rockslide killed two people who were sitting in their cars at a traffic light on Saw Mill Run Boulevard
 - o In 2006, Kilbuck Township massive landslide closed Rt. 65 for a month

landslide hazard map for the US

II. General Information

- landslide: down-slope displacement of material (known as a *mass movement*)
 - o can occur both on land and under water
 - o can occur in rock, soil, ice/snow
- significant problem in U.S. annually
 - o in every state
 - o \$2 \$4 billion in damage
 - o 25 50 deaths on average
- many different types that are classified by:
 - o rapidity of movement
 - type of materials transported
- slope stability
 - o driving forces vs. resisting forces
 - o driving force
 - gravity
 - excess loading
 - o other factors:
 - amount of water
 - strength/cohesiveness of materials
- unconsolidated materials:
 - angle of repose: maximum angle at which granular material can be piled
 - for dry sand = ~33 35°
 - depends on:
 - particle size
 - > particle shape
 - sorting
 - packing
 - moisture content
- role of water:
 - o increases loading
 - o reduces cohesion
 - dissolves cements between particles
 - expansion of clays reduces friction between grains
 - frost wedging weathers rocks

1995 La Conchita, CA landslide

III. Initiation of Mass Movements:

- saturation by water (lubrication)
 - heavy rains
 - rain following a prolonged drought

- · over steepening of slopes
 - o erosion by streams, waves, glaciers
 - human activity (road construction, mining activities)
- freeze/thaw cycles
- earthquakes
- volcanic eruptions
- steep slopes
 - o creation of unconsolidated debris
 - o removal of vegetation (either human caused or after a wildfire)
- vibrations
 - machinery
 - traffic
 - o thunder
- overloading
 - o snow
 - stockpiling (rock, ore)

IV. General Types of Mass Movements:

- 1. <u>fall:</u> material moves through air, lands at base of slope
 - very rapid process
 - initiated by natural or human activity
 - o example: rock-fall

- slide: material moves but stays in contact with underlying surface
 - cohesive blocks of material
 - o no internal shearing
 - o forms a head-scarp
 - o slide types:
 - rockslide
 - most common on steep slopes (road cuts, valleys)
 - velocities of 100+ miles per hour

- landslide
 - moves rapidly as a unit or series of units along the underlying surface
 - material moves until frictional resistance exceeds driving force

Landslide progressionPolhemus Road, San Mateo County, CA (1996-1997 rainy season)

- slump
 - > sliding of material along curved surface
 - > common in unconsolidated sediments, weaker rock units

- 3. <u>flow:</u> materials break up and moves as a viscous fluid (differential shearing)
 - o no distinct basal plane/surface
 - o greatest velocity at upper surface
 - o can be the wettest, driest, fastest and slowest types of mass movements
 - o falls & slides can undergo transitions to flows

o flow types:

- creep
 - very slow movement of soil down slope
 - ➤ tell-tale indicators
 - most important in terms of total volume

initiated:

- freeze-thaw cycles
- wetting-drying cycles
- biological displacement

bent tree trunks: evidence of soil creep

solifluction

- > very slow movement of soil down slope in colder environments
- water/ice saturated sediments

mud and debris flows

- rapid movement of soil and water
- water = ~ 30% total volume (mudflows)
- e.g., lahars, flash floods

Lahar at Mt. St. Helens volcano

debris avalanche

- unconsolidated debris moves rapidly down slope
- highest velocities
- semi-circular scape at the head, chute, and debris fan

<u>example:</u> Peru, 1970:

- earthquake triggered avalanche
- deposit moved 7 miles in < 3 minutes
- 80m (~260 ft.) high wave of debris coming down the valley
- 30,000 people killed

<u>example #2:</u> Socompa Volcano, Chile (7,000 years ago)

- major collapse produced a massive debris avalanche
- 500 km² coverage
- due to large uplift thrust fault
- 3 km blocks slid in-place
- smaller fragments flowed rather than sliding

Satellite image of Socompa Volcano, Chile showing the large debris avalanche. The flow stopped over 50km away (white arrow).