LECTURE #12: Landslide Types & Ground Collapse

Date: 24 February 2025

I. Landslides

- wide-spread hazard: global reach
 - o affects coastal and inland locations
 - urban and rural populations
 - o can be initiated by other hazards
 - volcanic eruptions (lahars, volcanic landslides)
 - severe storms (erosion of cliffs)
 - tsunamis
 - earthquakes
 - o can be initiated by human activity
 - road cuts
 - skiing (snow avalanches)

landslide hazard map for the US

- Deadly in Pittsburgh's history ...
 - In 1942, a rock fall buried a bus near Aliquippa, killing 22 people on board
 - In 1951, excavators for a new office building made an eight-foot deep cut at the base of a hill along Island Avenue in Stowe, triggering a 500-foot wide landslide that destroyed six houses, covered the road and dislocated a streetcar line and various utility lines
 - In 1983, a rockslide killed two people who were sitting in their cars at a traffic light on Saw Mill Run Boulevard
 - In 2006, Kilbuck Township massive landslide closed Rt. 65 for a month

II. General Information

- <u>landslide</u>: down-slope displacement of material (known as a *mass movement*)
 - $\circ~$ can occur both on land and under water
 - o can occur in rock, soil, ice/snow
- significant problem in U.S. annually
 - o in every state
 - \$2 \$4 billion in damage
 - o 25 50 deaths on average
- many different types that are classified by:
 - o rapidity of movement
 - o type of materials transported
- slope stability
 - o driving forces vs. resisting forces
 - \circ driving force
 - gravity
 - excess loading
 - other factors:
 - amount of water
 - strength/cohesiveness of materials
- unconsolidated materials:
 - angle of repose: maximum angle at which granular material can be piled
 - for dry sand = \sim 33 35°
 - can be somewhat higher or much lower depending on the material
 - also affected by:
 - > particle size
 - > particle shape
 - > sorting
 - > packing
 - moisture content

1995 La Conchita, CA landslide

- role of water:
 - o increases loading
 - reduces cohesion
 - dissolves cements between particles
 - expansion of clays reduces friction between grains
 - frost wedging weathers rocks

III. Initiation of Mass Movements:

- saturation by water (adds lubrication)
 - o heavy rains
 - o rain following a prolonged drought
- over steepening of slopes
 - o erosion by streams, waves, glaciers
 - o human activity (road construction, mining activities)
- freeze/thaw cycles
- earthquakes
- volcanic eruptions
- steep slopes
 - creation of unconsolidated debris
 - o removal of vegetation (either human caused or after a wildfire)
- vibrations
 - o machinery
 - o traffic
 - \circ thunder
- overloading
 - o snow
 - o stockpiling (rock, ore)

IV. General Types of Mass Movements:

- fall: material moves through air, lands at base of slope
 - very rapid process
 - initiated by natural or human activity
 - example: rockfall

- 2. **slide:** material moves but stays in contact with underlying surface
 - o cohesive blocks of material
 - o no internal shearing
 - o forms a head-scarp
 - slide types:
 - rockslide
 - most common on steep slopes (road cuts, valleys)
 - velocities of 100+ miles per hour
 - Iandslide

- \rightarrow moves rapidly as a unit or series of units along the underlying surface
- > material moves until frictional resistance exceeds driving force

Landslide progression Polhemus Road, San Mateo County, CA (1996-1997 rainy season)

- <u>slump</u>
 - sliding of material along curved surface
 - common in unconsolidated sediments, weaker rock units

- 3. flow: materials break up and moves as a viscous fluid (differential shearing)
 - o no distinct basal plane/surface
 - o greatest velocity at upper surface
 - o can be the wettest, driest, fastest and slowest types of mass movements
 - o falls & slides can undergo transitions to flows
 - o flow types:
 - creep
 - very slow movement of soil down slope
 - tell-tale indicators
 - most important in terms of total volume
 - \succ initiated:
 - freeze-thaw cycles
 - wetting-drying cycles
 - biological displacement

bent tree trunks: evidence of soil creep

- solifluction
 - very slow movement of soil down slope
 - water/ice saturated sediments
 - most important in colder/alpine environments
- <u>mud and debris flows</u>
 - rapid movement of soil and water
 - water = ~ 30% total volume (mudflows)
 - e.g., lahars, flash floods

Lahar at Mt. St. Helens volcano

- debris avalanche
 - unconsolidated debris moves rapidly down slope
 - highest velocities
 - > semi-circular scarp at the head, chute, and debris fan
 - > example: Peru, 1970:
 - earthquake triggered avalanche
 - deposit moved 7 miles in < 3 minutes
 - 80m (~260 ft.) high wave of debris coming down the valley
 - 30,000 people killed

- > example #2: Socompa Volcano, Chile (7,000 years ago)
 - major collapse produced a massive debris avalanche
 - 500 km² coverage
 - due to large uplift thrust fault
 - 3 km blocks slid in-place
 - smaller fragments flowed rather than sliding

Satellite image of Socompa Volcano, Chile showing the large debris avalanche. The flow stopped over 50km away (white arrow).