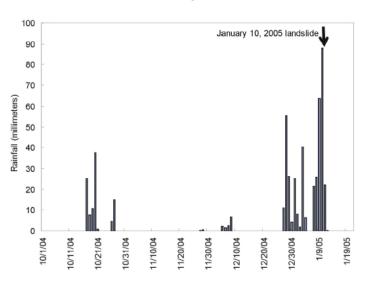

LECTURE #13: Landslide Assessment, Mitigation and Case Studies

Date: 26 February 2025

I. Landslide Assessment (Monitoring)


- landslide potential maps
 - o used to identify slide prone areas
 - the distribution of past landslides
 - o identify potentially unstable slopes
 - terminology
 - incidence: the percentage of slope failure over a given area (e.g., county)
 can be high, moderate, or low incidence
 - <u>susceptibility:</u> the probable degree to slope failure of rocks and soils due to natural or artificial cutting, loading of slopes, or anomalously high precipitation
 - > high, moderate, or low susceptibility

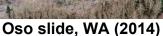
II. Case Studies

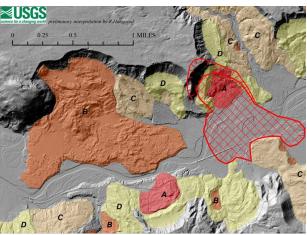
- case study #1: La Conchita, CA (2005)
 - o prior slope failure (landslide) in 1995
 - o after which, the homes were rebuilt
 - o excessive rain in January, 2005
 - o 1995 debris was mobilized, and a new slide/flow created
 - destroyed 15 homes
 - killed 12 people

Ventura Daily Rainfall

La Conchita, CA (1995)

La Conchita, CA (2005)




La Conchita, CA (2005)

o <u>notes:</u>

- case study #2: Oso, WA (2014)
 - o landslide transitioning into a mud/debris flow
 - o engulfed a rural neighborhood
 - o covering 1 square mile
 - 43 people were killed
 - 49 homes and other structures destroyed

maps of past slides in the Oso area

notes:

III. Predicting Mass Movements

- slopes
 - over-steepened slopes can be a problem especially in:
 - seismically active areas
 - regions of large earth moving activity
 - during large rainfall events
 - geology and rock structure
 - examples:
 - weak base of slope
 - orientation of bedding planes, fractures
 - evidence of prior falls or slides
 - leads to assessments of high, moderate, or low susceptibility

safe or not?

- surface water buildup
 - o saturation indicated by springs, wet ground, and pools of standing water
- vegetation
 - vegetation of different ages (why?)
 - o fallen or bent vegetation
 - accelerated creep
 - can occur prior to failure
- visible damage to structures

damage following a small slide

- morphologic features resulting from old slides
 - o indicative of prior mass movement
 - o scarps & "hummocky" topography

IV. Prevention & Mitigation

- slope drainage
 - interceptor drains
 - concrete lined drains that capture runoff and transport it away from slope
- perforated pipe
 - driven into slope to collect water and drain it away from slope
- wells into sloped terrain
 - pumped to remove water rapidly


- slope reduction
 - o reduce slope by grading
 - excavate terraces or benches into slope
 - especially important in regions of large earth moving activity
- engineering structures
 - seal crevices and apply shotcrete
 - 8 10 cm thick layer of sprayed on concrete
 - minimizes frost wedging
 - keeps loose rocks from eroding

- retaining walls with drains
 - o stabilize base of slope
- rock bolts
 - steel rods in cement
 - stabilize inclined layers
- cable nets, wire fences, intercept ditches or berms
 - o to catch rock falls

- rock sheds and tunnels
 - o landslide
 - o snow avalanches

