LECTURE #23: Wild Fire Hazards: Monitoring & Mitigation

Date: 14 April 2025

I. Course Information/Reminders:

- the class evaluations (the OMET's) are open and available now to all students if you would like to review the class, myself, and/or your TA
- I will talk a little about the final exam and the last recitation at the start of this lecture on Wednesday
- I will have normal office hours this week and next
 - o however, I will not be here for the final exam due to conference travel
 - \circ the TAs will proctor the exam along with another professor filling in for me

II. Final Exam

- Time and Date
 - o last day of finals: Wednesday, April 30th @ <u>8:00am</u> (have until 9:50am)
- same format as the mid-term exams
 - except a little longer (~75 questions)
 - better odds for you each question is only worth 1.33 points rather than 2.0 points
 - o material:
 - book chapters: 11 14 and 17 18
 - hurricanes, flooding (plus the video), wildfires, mega-disasters
 - weeks 12 16
 - o same rules as previous exams
 - don't show up later than 15 min!
 - bring a pencil, eraser, and a photo ID

III. Monitoring

- primarily: satellite remote sensing
 - thermally elevated regions (*hot spots*)
 - detection of active fires
 - o smoke plumes
 - previously burned areas
 - monitoring land conditions for increased hazard risk

- o weather and modeling
 → produce fire hazard maps
 - drought/dryness
 - lightning strikes
 - wind direction
 - humidity

- FireBugs
 - older technology
 - o small, wireless sensors used for adaptive data collection
 - GPS
 - detect temperature, pressure, humidity, light
 - on a finger-sized board equipped with a radio
 - dropped throughout a forest
 - or around houses
 - information is broadcast back to monitoring agencies
- FireALERT MK I
 - newer technology
 - self-contained system
 - scans 360 degrees with an infrared camera
 - solar powered

IV. Mitigation: Poor Management Policies?

- aggressive fire fighting
 - o increased fuel/forest density
 - less fire resistant trees and grasses
 - increased fire impact
- growing population and tourism
 - o increased development of the wildland/urban interface
 - more homes at risk
 - o public education/awareness
 - national campaigns
 - local community-based efforts
 - o however, risks have *increased* for large fires!
 - one of the few hazards where successful mitigation efforts have increased the future risk!

Average Acres Burned 1919-1930-1940-1950-1960-1970-1980-1990-

Average Number of Acres Burned By Decade

- effects of wildland fire management on U.S. Forest Service budget
 - suppression costs have skyrocketed
 - exceeding \$1 billion in five of the last seven years
 - USFS non-fire budget has declined over 35% since FY2001
 - wildland fire management activities
 - > 13% of the agency's budget in fiscal year 1991
 - ➢ 48% in fiscal year 2009
 - \succ more than 65% now

V. Urban-Wildland Interface

- population shifts in the US over the past 40 years to more fire-prone states
- building of homes/towns in dangerous locations for fires
- other notes:

- building practices
 - can reduce the risk of increased fire damage/destruction to a structure in the path of a wildfire
 - e.g., do not build in fire-prone areas
 - not always easy to prevent
 - Iarge numbers of people moving into mountainous, forested areas
 - Iarge wildfires that move into already existing urban regions
 - <u>example:</u> Camp Fire (Paradise, CA)
 - o customize an existing structure to reduce threat:
 - remove vegetation close to home
 - avoid wood shingle roofs
 - avoid large wooden decks
 - use double-pane windows to help insulate
 - do not build on steep slopes
 - provide wide roads for fire vehicles
 - o other questions (FEMA website: <u>https://usfa.fema.gov/</u>)
 - Are combustible materials away from the house? → why?
 - Are sun decks and porches enclosed underneath? → why?
 - Are house vents covered with wire mesh? → why?
 - Are chimneys and stovepipes covered with spark arrestors? \rightarrow why?
- firefighting practices
 - building protection
 - water, fire retardant, spark inhibitor material

Use in higher fire hazard potential

- \circ fire breaks
 - mechanical
 - using controlled fire burns

water and fire retardant

from land and air

Use in lower hazard potential

fire breaks

fire retardant air drop

selective removal of trees

extinguish the fire

0

- remove fuel build-up
 - controlled burns
 - physical removal
 - prevents insect invasion

- \circ reducing the risk
 - fire is an important part of natural ecosystem
 - ➢ reduces fuel
 - ➤ thins trees
 - reduces disease

VI. Future?

- there have been more fires over time
- those fires have been larger
- only 11% of the Western US has burned
- these fires will have a large impact on the future economy and people's lives

Future (2040 - 2070)