LECTURE #25: Mega Disasters - Mass Extinction Events

Date: 17 April 2024

I. Course Information

- Final Exam reminder: Friday, April 26th @ 8:00pm
 - o please be on time, bring a pencil, eraser, your PeopleSoft #, and a photo ID
 - o covers everything from hurricanes up to and including today's final material
- reminder: the class evaluations (the OMETs) are open and available now to all students if you would like to review the class, myself, and/or your TA

II. Time & Life on Earth

- geologic time scale
 - divided into named eons, eras, periods, ...
 - concept of "deep time"
 - sometimes hard to visualize
 - one way to do that is to compress the history of the Earth into a 24 hour clock:
 - oldest rocks formed at 10:27am
 - > first fish not until 11:53pm
 - ▶ first land plants → 11:54pm
 - ➤ first dinosaur → 11:57pm
 - \rightarrow ice ages \rightarrow 11:59.2 pm
 - ➤ modern man → 11:59.9 pm

taxonomy

- the process of grouping of a species into higher and higher divisions based on similar characteristics
- kingdom \rightarrow phylum \rightarrow class \rightarrow order \rightarrow family \rightarrow genus \rightarrow species
 - important to understand:
 - if a fossil is discovered that belongs to a known *order*, then everything above that (class, phylum, kingdom) must exist
 - conversely, if an extinction wipes out up to a known order, then everything <u>below</u> that (family, genus, species) must also be extinct
 - the higher up in the taxonomy the more resistant to large disturbances
 - most diversity and least stability at the species level

III. Biodiversity

- has changed markedly over geologic time
- example: Cambrian Period
 - o name given to a particular time in geologic history
 - o 545 million years ago
 - an "explosion" of diversity in marine phyla
 - from almost none to near today's amount
 - in less than 100 million years!
 - why?
 - unknown exactly, but likely some large geologic event that disrupted the environments in which the species were adapted
 - ➢ if there was a sudden increase in ecological niches, these would be rapidly filled by the evolution of new species
 - many of these species flourished, but many also quickly died out

IV. Mass Extinctions

- if there's a loss of more than 25% of the families in a kingdom, that could lead to mass extinction
 - mass extinction events have removed 60-90% of the species that have existed on Earth
 - example: mass extinction of the dinosaurs (65 million years ago)
 - example: a much larger mass extinction at the end of the Permian Period (245 million years ago):
 - ▶ 95% of the species, 85% of the genera, 50% of the families, and 15% of the orders all disappeared

- many possible hypotheses for mass extinction events:
 - o changes in plate tectonics
 - number of continents
 - rate of sea floor spreading
 - size and position of the poles
 - all lead to dramatic climate changes (as discussed in the last lecture)

o changes in ecosystems (related to plate tectonics)

example: decreased sea floor spreading → less rocks produced at the divergent plate boundaries → more volume in the ocean basins → sea levels fall → draining of shallow/warm seas → species die off

volcanic causes

- most modern eruptions (effusive or explosive) influence local → regional weather
- most large explosive (calderas) and large-volume mafic effusive eruptions also effect climate
- very largest volume eruptions (flood basalts) linked to mass extinctions
- gas/particulates (aerosols) from an eruption have four main effects on the atmosphere and climate:
 - ➤ ozone reduction → reactions with CI
 - ➤ global warming → production of CO₂
 - ➤ global cooling → blocking sun light
 - ➤ acid rain → production of SO₂

- flood basalt eruptions
 - linked to Permian extinction (250 million years ago)
 - 85% of all marine species
 - 70% of all terrestrial species
 - same time as the eruption of Siberian traps flood basalts
 - Cretaceous extinction (65 million years ago)
 - eruption of Deccan flood basalts in India
 - same time as the large impact crater
 - both likely contributed to end of the dinosaurs

meteorite impacts

- throughout history
- most in the first ½ billion years
- largest risk now from near-Earth objects (NEO's)
- well preserved on some planets (like Mercury, the moon)
 - no erosion/plate tectonics
- seen on Earth in only a few locations
- mostly younger events
- only ~20% of what has hit land
- recall the energy source:
 - transfer of potential energy into kinetic energy
 - > KE = $\frac{1}{2}$ m v^2
 - higher the mass, the higher the velocity, the greater the heating!

- diameter = 500 m (1/3 mile)
- > v = 30,000 mph
- \triangleright calculated volume = 6.5 x 10⁷ m³
- \triangleright calculated mass = 1.7 x 10⁵ kg
- \rightarrow KE = 2.2 x 10¹⁴ Joules
- \rightarrow that energy would melt = 1.1 x 108 kg rock
- o what are the risks of a large impact today?
 - > 34,000 NEOs identified (number is a lot higher!)
 - > ~ 2,400 are classified as potentially hazardous asteroids
 - > ~ 50% of the NEOs could eventually hit the Earth
 - > ~ 100,000 years between hits
 - chance of dying by an impact of 1km meteor is 1 in 20,000
 - high risk because of the large number of deaths that would occur
 - > 1.5 billion people could be killed
 - this is 3x greater risk than dying in tornado!
 - about the same odds as dying in a plane crash

V. Modern Extinctions

- known to have been initiated by humans
 - migration patterns, industry, hunting, etc.
 - extinction over the past 10,000 years
 - > 73% of the large mammals
 - ➤ 66% of the large birds
 - > some of that is climate change related at the end of the last Ice Age
 - but also, much is from human migration and hunting

- example: New Zealand
 - isolated for a very long time (due to Plate Tectonics)
 - large, flightless birds evolved (kiwi, dodo, moa)
 - humans arrived in 1000 AD
 - 20 species quickly disappeared

VI. Summary: the Course in Graph and Map Forms

Insured Losses in 2023

Economist.com/graphicdetail

Billion Dollar Climate and Weather Disasters

ENTS	DISASTER TYPE	NUMBER OF EVENTS	PERCENT FREQUENCY	NORMALIZED DAMAGES (Billions of Dollars)	PERCENT DAMAGE
1-3	Tropical Storms/Hurricanes	20	32.3%	144	36.8%
4-6	Non-Tropical Floods	12	19.4%	55	14.1%
7-9	Heatwaves/Droughts	10	16.2%	144	36.8%
	Severe Weather	7	11.3%	13	3.3%
0 - 12	Fires	6	9.6%	13	3.3%
	Freezes	2	3.2%	6	1.6%
13 - 15	Blizzards	2	3.2%	9	2.3%
6 - 20	Ice Storms	2	3.2%	5	1.3%
	Noreaster	_1_	1.6%	2_	0.5%
1 - 25		62		391	
֡	1 - 3 4 - 6 7 - 9	TYPE 1 - 3 Tropical Storms/Hurricanes 4 - 6 Non-Tropical Floods Heatwaves/Droughts Severe Weather Fires Freezes Blizzards 6 - 20 Ice Storms Noreaster	TYPE EVENTS 1 - 3	TYPE EVENTS FREQUENCY 1 - 3	TYPE EVENTS FREQUENCY (Billions of Dollars) 1 - 3 Tropical Storms/Hurricanes 20 32.3% 144 4 - 6 Non-Tropical Floods 12 19.4% 55 7 - 9 Heatwaves/Droughts 10 16.2% 144 Severe Weather 7 11.3% 13 Fires 6 9.6% 13 3 - 15 Freezes 2 3.2% 6 Blizzards 2 3.2% 9 14 2 5 Noreaster 1 1.6% 2

Please note that the national map color-coded by state reflects a summation of billion dollar events, for each state affected—ie, it does not mean that each state shown suffered at least \$1 billion in losses for each event.