LECTURE #4: Rocks & the Rock Cycle

Date: 22 January 2025

I. Rock Types

- we want to know: how do the major minerals and mineral classes form into rocks?
- why do we care about rocks for a course in Natural Disasters!?
 - certain minerals, rock compositions, and rock textures can tell a geologist a lot about the hazardous conditions present in the past, for example:
 - the explosive potential of a nearby volcano
 - the ability of rocks/soil to absorb water during a flood
 - the composition of rocks and their orientation as potential landslide locations
- what is a rock?
 - <u>rock</u>: a naturally occurring solid made of one or more minerals *or other solid* substances
 - this is a simpler and more open definition than we had for a mineral
 - examples: a sandstone that is made of only quartz sand mineral grains and a limestone that is made up of only fossils *(living matter)* are both rocks
 - is coal a rock?? _____
 - why/why not?
- there are 3 rock types
- 1. Igneous Rocks
 - form when molten (melted) rock cools and solidifies either <u>under</u> or <u>on</u> the Earth's surface
 - solidifies slowly underground: <u>large</u> mineral crystals form
 - solidifies quickly on the surface: small mineral crystals form
 - solidifies very quickly on the surface: glass forms
 - solidifies slowly (but only partially) underground and then erupts large mineral crystals in a smaller-grain matrix (that cooled quickly)
 known as a porphyritic texture
 - if there is a large amount of water present in the magma
 > explosive volcanoes
 - with little water present in the magma
 - > effusive (non-explosive) volcanoes

- range of igneous rocks
 - from light to dark minerals
 - from extrusive (on the surface) vs. intrusive (underground)
 - intrusive: slow-cooling rock with many large grains
 - <u>extrusive</u>: fast-cooling rock with many small grains
 - granite (*intrusive*) / *rhyolite* (extrusive)
 - average composition of the continental crust
 - generally, more light-colored minerals
 - gabbro (intrusive) / basalt (extrusive)
 - average composition of the oceanic crust
 - generally, more dark-colored minerals
- 2. Metamorphic Rocks
 - form when an existing rock of *any* of the three types re-crystallizes (but does not melt)

metamorphic rock

- o it experiences elevated temperatures and/or pressures
 - known as a "solid-state transformation"

 \rightarrow

 \rightarrow

 \rightarrow

- \circ a rock that is metamorphosed starts as a "parent" rock first
- o parent rock:
 - limestone
 - shale
 - sandstone
- o contact metamorphism
 - happens with <u>high</u> temperature (T), <u>low</u> pressure (P)
 - occurs where a hot magma intrudes colder, older rocks
 - "cooks" the surrounding parent rocks (aka, country rocks)
 - no foliation (banding) present in these

	Dull Mar
Sedimentary	
Rock	
Layers	
	<u> </u>
	Pluton
	(magma)
\mathbf{R}	9
/	
/	

Contact metamorphosed rocks

granite

(slow cooling, larger mineral grains)

- regional metamorphism
 - happens with <u>high</u> T and <u>high</u> P
 - occurs where continental collisions form mountain belts
 - deep core of the mountains experiences much higher temperatures and pressures
 - results in light/dark bands of minerals
 - called "foliation"

gneiss

- 3. Sedimentary Rocks
 - o form on/near the Earth's surface or under the oceans
 - lithification (*transforming into rock*) of fragments of other rocks (*e.g.*, *sandstones*)
 - o fragments of organic remains (e.g., fossil plants, shells, bones)
 - solids precipitated from liquids (e.g., salt, limestone)
 - mechanical formation style
 - lithification of sediments/rock fragments
 - examples:
 - sandstones
 - ➤ mudstones
 - shales
 - breccia

- o chemical formation style
 - evaporation, precipitation of minerals from a liquid like seawater
 - examples:
 - limestone (CaCO₃)
 - ➢ gypsum (CaSO₄ · 2H₂O)
 - ➤ salt (NaCl)
 - CaCO₃ → very important when it comes to carbon-cycle!
 - why?

- recycling of rocks (occurs from weathering and Plate Tectonics)
 - we will examine Plate Tectonics next week
 - \circ there is a difference between the rocks of the oceanic and continental crust
 - age and composition are two important distinctions
 - oldest continental rocks are 3-4 billion and found in areas known as cratons
 - cratons:

- Iocated in the continental interiors
- > the earliest crust (proto-continents)
- new material constantly being added to the cratons: from volcanoes and continental collisions
- material constantly being removed from the cratons: from weathering and erosion

II. The Rock Cycle

- processes: each and every rock, no matter how dull looking, came into existence as the result of some process
 - o deciphering the rock allows us to recognize that process, and therefore:
 - how it worked in the past
 - and how the Earth works today
 - o because each mineral forms under specific conditions
 - geologists use the minerals to identify the rocks
 - and the rocks origin story
- the rock cycle describes pathways of the rock-formation process
 - consequence of Plate Tectonics
 - estimated time of about 100 million years per cycle
 - > much longer than the times of atmosphere or ocean cycles
 - > takes even longer at continental interiors (cratons)
 - not a completely closed loop
 - > new input and exit pathways for rock material
 - most material has been recycled many times from continent to the mantle
 nearly complete crustal replenishment every 2-3 billion years
- we will fill in the missing blanks in the Rock Cycle below during lecture:

III. Informal Homework:

• What two rock types do you see when entering the Cathedral of Learning?