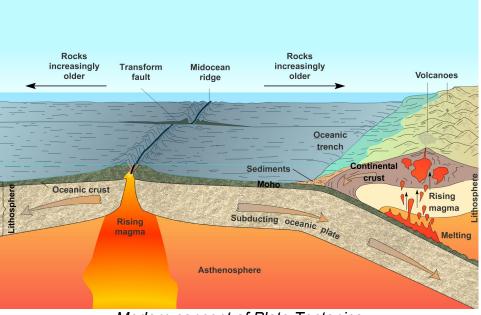
LECTURE #5: The Scientific Method: Introduction to Plate Tectonics

Date: 27 January 2025

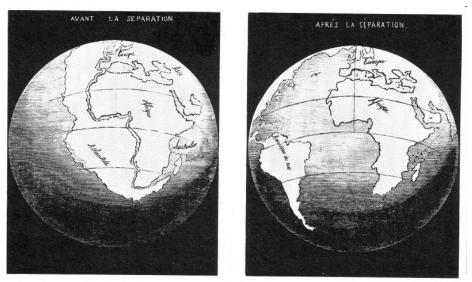
I. Reminder:

- exam 1 is two weeks from today
 - o come talk to me during office hours if something is not making sense
 - o study from the notes
 - I will show a few example questions next week

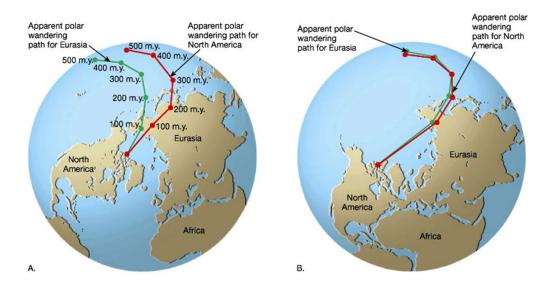

II. Review from Last Class

- moved from mineral to rocks
 - \circ definition of a rock
 - minerals as they relate to rock type
 - especially for some of the hazards we will discuss in the coming weeks
 - three major rock types
 - igneous
 - forms from molten rock
 - > crystal size depends on how fast the rock cooled
 - metamorphic
 - forms from solid-state transformation
 - > high pressure/temperature but not enough to melt the rock
 - sedimentary
 - forms either from mechanical (from pieces of other rocks, sediments, living matter) or chemical (precipitates out of water) processes
 - o rock cycle
 - describes pathways of the rock-formation process

III. Plate Tectonics


- today we will examine the basic concepts of Plate Tectonics in light of the **Scientific Method**
 - o what is the Scientific Method?
 - o how do scientists use it to form hypotheses and theories from observable data?
 - how was it used specifically for the Theory of Plate Tectonics?
- Solid Earth Circulation
 - yes, the solid Earth circulates
 - Earth's crust moves horizontally and vertically
 - o together with erosion, weathering and lithification (process of forming a rock)
 - these all produce a large amount chemical recycling
 - also, VERY important for chemical recycling of the oceans and atmosphere

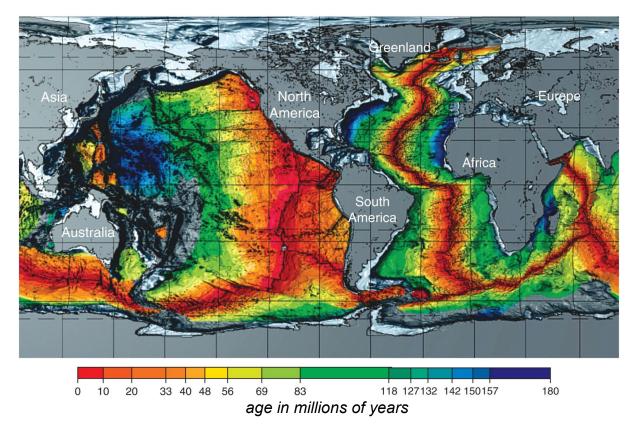
- for example, the carbon cycle cycles CO₂ from the air into living material, into the ocean, eventually into the rocks (limestone), and then back again
- \circ $\,$ need to understand how the Earth moves
 - what is the energy source for this? (described in lecture #2)
 - what is the rock cycle? (described in last lecture)


Modern concept of Plate Tectonics

- early observations of what was then called Continental Drift
 - Alfred Wegener proposed a hypothesis called Continental Drift in 1924
 - observed that the continents seemed to fit together if the oceans were removed from maps
 - was the first to describe it in detail scientifically, but not the first to note this:
 - Abraham Ortelius (1596), Francis Bacon (1625), Benjamin Franklin (1858), Antonio Snider-Pellegrini (1858)

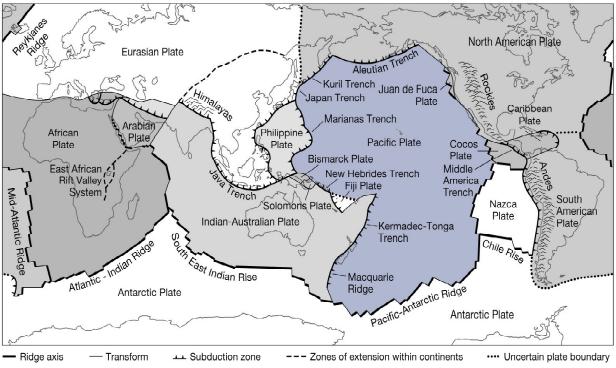
first known illustration of the Opening of the Atlantic Ocean by Antonio Snider-Pellegrini, 1858

- Wegner had more information/data than those earlier scientists
 - he noted similar geology on these continents as if they were formed at the same location
 - > he observed data of similar fossils and species on both continents
 - > other evidence:
 - ancient climate zones (coral reefs and deserts)
 - glaciations (location and direction of glaciers impossible in current climate)
 - "polar wandering" (shown below)



- **skeptics** of Continental Drift said:
 - there was no explanation of the energy source
 - there was no ability to refute a claim that plants and animals may have just migrated
 - there was no data/information included about the sea floor
 - how does something as large as a continent just plow its way through the ocean floor!?
 - > after all, could the continental fit just be a coincidence?
 - > much debate and the hypothesis eventually died
 - > that is all part of the scientific process!

IV. Scientific Method


- allows hypotheses to be tested and debated
- the good ones hold up and the weak ones die out
- does **not** imply that scientists are unsure
- **does** imply that scientists are constantly testing new and better ideas
 - \circ it is NOT a closed-door or closed-minded approach
- so, how did the Continental Drift *Hypothesis* eventually lead to the *Theory* of Plate Tectonics??
 - o more data were collected decades after Continental Drift died away
 - in the early 1960's it was noted that the sea floor appeared to be spreading from its center (data from submarines and satellites)

- > <u>younger</u> rocks at the center ridge and <u>older</u> rocks near the continents
- known as the Sea Floor Spreading Hypothesis
- > could that be linked to the movement of the continents?

- lead to the proposal that the mantle of the Earth was convecting much like water boiling on the stove top
 - driven by the Earth's internal heat
 - > this was the driving force (energy) that Wegner lacked for his hypothesis
 - the movement of the mantle created new ocean floor crust, which spread out and pushed the passive continents along
- this then became the unifying theory for the geosciences: Theory of Plate Tectonics (but only in the late 1960s!)
- General Stages of the Scientific Method
 - 1. observation & data collection
 - example:
 - Wegner's original observations
 - > geophysical data from the sea floor in the 1960's
 - 2. hypothesis
 - example:
 - > ocean floor created at the center, destroyed at the edges
 - continental crust therefore must move as part of this process
 - 3. prediction
 - example:
 - if the sea floor was being created at the middle, then it must be older at the edges (was that true?)

- \geq if this process was ongoing over geologic history, then there should be past evidence of older continental separations and collisions
- \blacktriangleright were these found? \rightarrow yes, the Appalachian Mountains, for example
- 4. testing and debate
 - example:
 - collect the ocean floor rocks and determine their ages
 - re-examine the continental margins and older geology
 - \geq debate any alternative hypotheses/data
- 5. formulate a theory
 - example:
 - mantle convection (driving source) causes upwelling and separation at the mid-ocean ridges
 - this drives the movement of the sea floor (the spreading)
 - which "drags" the continents along
 - collisions form mountain belts (continent continent) and volcanoes (continent – sea floor)
 - separation forms mid-ocean ridges and subduction destroys older ocean crust
 - process has operated for most of Earth's history
 - important to understand: a theory is as close to scientific fact as possible

modern-day plate boundary map

assuming that Plate Tectonics continues

o what do you think that the Earth will look like in the future?