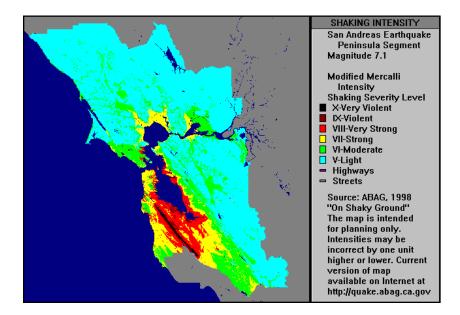
LECTURE #8: Earthquake Disasters: Mitigation & Tsunami Science

Date: 5 Feb 2025

I. Exam I


- Feb 10th next Monday
 - covers material from weeks 1 5 (everything up to/including today's class)
 - $\circ~$ ~ 50 multiple choice questions including a few based on pictures, the videos, in the news slides
 - o never leave blanks/skip questions better to guess if you are unsure
- please be on time
 if you are more than 10 minutes late or you will not be given the test
- you must have: Peoplesoft number, #2 pencil, eraser, photo ID
- here are example questions, which we will go over at the start of lecture:

 - In general, the larger and more energetic the disaster, the shorter the return period between such events.
 A. true B. false
 - 3. The heat that transformed the Earth early in its history came primarily from all but which of the following?
 - A. impact energy B. gravitational energy
 - C. magnetic energy D. decay of radioactive elements
 - 4. The compressional movement at subduction zones and continent-continent collisions generate the largest tectonic earthquakes affecting the widest areas.
 A. true B. false

II. EQs: Hazard Intensity

- function of the magnitude (energy released)
 - o other critical factors are equally important and include
 - duration of shaking
 - rock/soil types at/near the surface
 - quality of the structures
 - integrity/strength
 - > density
 - ➤ utilities

- human population
 - > density
 - time of day (at work, home, on the highways?)
- duration of shaking
 - longer ground shaking causes more damage to buildings
 - o potentially results in:
 - more people injured or killed
 - evacuation of homes and businesses
 - segments of the economy that suffer
 - hazardous materials can be released
 - o mitigation through hazard maps
 - providing shaking hazard information
 - show the areas with the strongest expected shaking
 - suggest ways to mitigate shaking damage

- rock/soil types at/near the surface:
 - o contributor to higher amounts of ground shaking
 - transmits surface waves and can amplify them
 - o has a LARGE effect on amount of shaking & building damage
 - buildings on bedrock always suffer far less damage than those built on soft sediment, soils, and/or weakened rock
 - sediment compresses more and tends to subside and/or amplify the ground motion
 - EQ induced landslides:
 - vibrations from EQ an act as a trigger for landslides in steep areas
 - we will cover landslides more in later lectures

- <u>liquefaction</u>: the process of ground water flow toward the surface due to seismic waves
 - the flow keeps soil particles from touching
 - creates a flowing soil/water mixture (similar to quicksand)
 - surface expression includes sand boils, dikes, and ridges

building damage from liquefaction

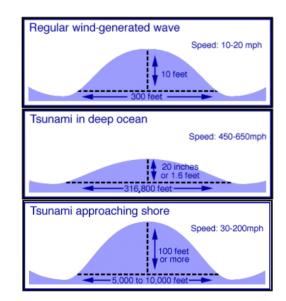
- structural integrity:
 - o critical in preventing high death rates following a large earthquake
 - a vast majority of the fatalities from EQ are caused by building/structural failures (key point in the video homework)
 - o examples:
 - <u>brickwork:</u> fails at a high rate due to the weakness of the mortar

- <u>wood-frame</u>: more flexible and can withstand low-moderate ground motion, but easily destroyed
- <u>heavy-roofed structures</u>: very unstable and easily fail, trapping people underneath
- <u>buildings with large open spaces</u>: have weak floors which promote "pancaking" failure
 - > example: parking garages, hotel lobbies, etc.
- integrity of utilities:
 - failure of underground pipelines (gas, water, electrical) due to ground acceleration
 - \circ in modern cities, problems arise due to post-EQ fires


- can impact other facilities: nuclear power facilities, chemical plants, etc.
- can cause a large increase in EQ-related damage and deaths due to these fires, explosions, and electrocutions
- failure of water lines also hinders fire-fighting efforts
- example: over 30% of the city of San Francisco was destroyed due to fire after the 1906 EQ
- population/building density, time of day (aka, the people factor)
 - o as the density of people and buildings increase, so does the hazard risks
 - $\circ~$ if more people are out on the roads, walking on the sidewalks or at work in buildings, there are more chances for injury
- mitigation efforts
 - o structural reinforcements
 - buildings, concrete columns, single-family home construction

I. Tsunamis (new topic)

- awareness of the disaster
 - South Asian (Dec. 26, 2004) and Japan (Mar. 11, 2011) tsunamis
 - these received mass media coverage around the world
 - first major tsunamis in the recent past
 - last large one was in the Indian Ocean in 1883
 - caused by the eruption of Krakatau Volcano
 - ➢ 36,000 deaths
 - the 2004 tsunami: killed ~230,000 people in 14 countries
 - ~ 150,000 in Indonesia alone
 - caused by the 3rd largest EQ ever recorded (M ~ 9.1)
 - hypocenter: 30km below seafloor
 - > vertical offset (thrust fault) of the seafloor along the fault trace: 25m
- a tsunami is NOT a "tidal wave"
 - \circ nothing to do with the tides, nor is it a wind-driven wave
- caused by a major transfer of energy into the ocean water
 - o disturbance on the sea floor (volcano, EQ, landslide, or even meteorite impact)
 - <u>example</u>: movement along a trust fault, for example, can create an upward motion of the water → produces surface movement (swells)
 - this is what happened in Indonesia and Japan
- can strike almost any coastal area and cause severe damage
 - much more common in the Pacific Ocean
- deaths:
 - o 1600-1900: ~321,000
 - o 1900-2000: ~150,000
 - 2000-present: ~230,000 (2004 tsunami) + ~19,000 (2011 tsunami) + ~1500 (2018 tsunami) = ~250,000


II. Tsunami Characteristics:

- disturbance of the water column
- propagation of energy away from source in all directions
 - o reflection and refraction of waves at coastlines

Video modeling the distribution of waves following the 2004 tsunami (red/yellow colors are wave peak heights and dark blue are the wave troughs)

- energy is distributed over the entire water column
 - wavelength is much longer than wind waves
 - ~ 10s up to 100 kilometers
 - wave height is much smaller in deep water
 - 0.5 1.0 meters
 - generally, not felt in the open ocean in boats
 - speed can exceed 500 mph in the deep ocean
 - as fast as a jet aircraft!

III. Next Class:

- we will finish the notes on tsunamis looking at monitoring and mitigation
- also, please review old news and social media accounts of the 2011 Japan EQ and tsunami
 - we will discuss those events since the disaster was so well covered by first person accounts and cell phone videos