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Abstract

The spatial and temporal distribution of land cover is a fundamental dataset for urban ecological research. An expert (or hypothesis

testing) system has been used with Landsat Thematic Mapper (TM) data to derive a land cover classification for the semiarid Phoenix

metropolitan portion of the Central Arizona-Phoenix Long Term Ecological Research (CAP LTER) site. Expert systems allow for the

integration of remotely sensed data with other sources of georeferenced information such as land use data, spatial texture, and digital

elevation models (DEMs) to obtain greater classification accuracy. Logical decision rules are used with the various datasets to assign class

values to each pixel. TM reflectance data acquired in 1998 [visible to shortwave infrared (VSWIR) bands plus a vegetation index] were

initially classified for land cover using a maximum likelihood decision rule. In addition, spatial texture of the TM data was calculated. An

expert system was constructed to perform postclassification sorting of the initial land cover classification using additional spatial datasets

such as texture, land use, water rights, city boundaries, and Native American reservation boundaries. Pixels were reclassified using logical

decision rules into 12 classes. The overall accuracy of this technique was 85%. Individual class user’s accuracy ranged from 73% to 99%,

with the exception of the commercial/industrial materials class. This class performed poorly (user’s accuracy of 49%) due to the similarity of

subpixel components with other classes. The results presented here indicate that the expert system approach will be useful both for ongoing

CAP LTER research, as well as the planned global Urban Environmental Monitoring (UEM) program of the Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER) instrument. D 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Urban land cover types and their areal distributions are

fundamental data required for a wide range of studies in the

physical and social sciences, as well as by municipalities for

land planning purposes. The visible to shortwave infrared

(VSWIR) bands of Landsat Multispectral Scanner (MSS)

and Thematic Mapper (TM) data have been extensively

used for forestry and agricultural land cover analysis since

the Landsat program began in 1972 (an extensive literature

exists; some examples are Anderson, Hardy, Roach, &

Witmer, 1976; Botkin, Estes, & MacDonald, 1984; Lor-

enzo-Garcia & Hoffer, 1993; Pax-Lenney & Woodcock,

1997; Wilkie & Finn, 1996). Urban land cover analysis

has also made extensive use of the MSS and TM scanners

(Haack, 1983; Haack, Bryant, & Adams, 1987; Lindgren,

1985; Ridd, 1995; Ridd & Liu, 1998). However, the

relatively low resolution of the MSS (79 m/pixel) and TM

(28.5 m/pixel) data only allows classification of land cover

to Level 1–2 of the Anderson system (Anderson et al.,

1976; Ridd, 1995). New sensors with higher spatial reso-

lutions are also being used for urban studies and allow a

land cover classification to Level 2–3 of Anderson et al.

(1976). These instruments include the 10–20 m/pixel SPOT
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(Gong & Howarth, 1990; Martin, Howarth, & Holder, 1988;

Ridd, 1995; Treitz, 1992), as well as airborne scanners with

3–15 m/pixel resolution such as the Thermal Infrared

Multispectral Scanner (TIMS) and the TM simulator

(NS001) (Quattrochi & Ridd, 1998; Ramsey, Stefanov, &

Christensen, 1999). Newer sensors with either greater spec-

tral/temporal resolution such as the Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER), the

Enhanced TM Plus (ETM+), the airborne MODIS/ASTER

simulator (MASTER), or increased (1 m/pixel or less)

spatial resolution (Ikonos) will allow even more precise

land cover classification. Data collected by the MSS and

TM will continue to be used as a historical global database.

The work presented here uses TM data. However, the basic

technique is applicable to any remotely sensed data, and

should improve in accuracy with increased spectral and/or

spatial resolution of those data.

The majority of studies relying on remotely sensed

information to classify land cover types either use raw

data number (DN) values or calibrated reflectance (Ro), if a

more precise material identification is needed. Geological

and biological applications of TM data have also used

simple band ratio techniques and spectroscopy to accen-

tuate spectral features indicative of specific surficial mate-

rials, biomass, and vegetation health (Huete, 1988; Lyon,

Yuan, Lunetta, & Elvidge, 1998; Mattikalli, 1997; Sultan,

Arvidson, Sturchio, & Guinness, 1987). Land cover clas-

sification of urban areas has been problematic due to the

heterogeneity and small spatial size of the surficial materi-

als, which leads to significant subpixel mixing (Foody,

2000; Ridd, 1995). This problem becomes exacerbated

when discrimination of multiple classes is necessary. Sig-

nificant improvements in the accuracy of land cover

classification in urban areas have been achieved using a

variety of sophisticated approaches including: (1) the use

of neural networks (Berberoglu, Lloyd, Atkinson, & Cur-

ran, 2000; Kumar, Basu, & Majumdar, 1997; Paola &

Schowengerdt, 1995); (2) fuzzy classification (Bastin,

1997; Fisher & Pathirana, 1990; Foody, 2000); and (3)

image texture analysis (Berberoglu et al., 2000; Gong &

Howarth, 1990; Iron & Petersen, 1981; Stuckens, Coppin,

& Bauer, 2000).

Yet another successful technique for improving classi-

fication accuracy has been the incorporation of other data

sources in a classification or postclassification sorting

mode, referred to hereafter as an expert system (Cibula

& Nyquist, 1987; Franklin, 1994; Greenberg & Bradley,

1997; Harris & Ventura, 1995; Loveland, Merchant,

Ohlen, & Brown, 1991; Stuckens et al., 2000; Treitz,

1992; Vogelmann, Sohl, & Howard, 1998). Harris &

Ventura (1995) used zoning and housing density informa-

tion to perform postclassification sorting of an initial

maximum likelihood classification of TM data for the

Beaver Dam, Wisconsin area. Vogelmann et al. (1998)

incorporated vegetation indices derived from their base

TM data, together with several ancillary datasets, to

produce a final land cover classification of a 30 million

ha region in the eastern United States. Greenberg and

Bradley (1997) used population and road density informa-

tion with TM data to classify land cover in the Seattle,

WA area. Stuckens et al. (2000) produced a land cover

classification of the Minneapolis-St. Paul, MN urban area

using TM data with ancillary land use and wetland

inventory information.

The present work applies an expert system approach to

the semiarid urban land cover of Maricopa County, AZ.

The study area occupies approximately 7900 km2 cen-

tered on the Phoenix, AZ metropolitan region (Fig. 1).

Urban and suburban development of the study region has

proceeded at a high rate with widespread conversion of

adjacent, undeveloped desert regions and agricultural

lands to residential and commercial uses. The county

has been ranked as the first or second fastest growing

region in the United States since 1990. Data collected in

1995 (Maricopa Association of Governments, 1995) indi-

cated that the Phoenix metropolitan area included 1168

km2 in residential use, 378 km2 in urban (commercial,

industrial, and public facilities) use, 2424 km2 in agricul-

tural (and vacant) use, and 448 km2 of open space. The

primary motivation for this work is historical land cover

classification and future monitoring of land cover change

as part of the Central Arizona-Phoenix Long Term Eco-

Fig. 1. Location map for the metropolitan Phoenix, AZ study region (black

rectangle). The locations of major urban centers in Arizona are provided for

geographic reference.
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logical Research (CAP LTER) Project. In addition, tech-

niques such as those presented here will be applied to

data collected by the ASTER instrument over 100 of the

world’s largest and most at-risk urban centers to map land

cover and assess its temporal variability over 6 years.

2. Methodology

2.1. Data processing and atmospheric correction

Two adjacent scenes of TM data were required to

completely cover the Phoenix metropolitan region

(acquired May 24, 1998 and June 18, 1998). Each TM

scene was georeferenced to the NAD27 datum and Uni-

versal Transverse Mercator Zone 12 North coordinate

system with an estimated positional error of 0.3–0.5 pixel,

or 9–15 m. The NAD27 datum was selected to match the

geographic projections of the ancillary datasets. The two

scene histograms were compared to assess the similarity of

pixel DN distributions. As the histograms were similar,

histogram matching was performed prior to any additional

processing to minimize interscene variability. A single

mosaic image was then constructed from the two histo-

gram-matched scenes. The study area was subset out of the

scene mosaic, corrected for the effects of atmosphere, and

converted to calibrated reflectance using commercially

available software that incorporates the MODTRAN3 radi-

ative transfer code (ATCOR2 for the ERDAS Imagine

software; GEOSYSTEMS GmbH, 1997). As the two

scenes were collected within 1 month of each other,

significant changes in the atmospheric components of

scene radiance were not expected. A midlatitude summer,

urban aerosol concentration model with 25 km estimated

visibility therefore was used as input to the radiative

transfer code.

TM VSWIR Bands 1–5 and 7 were combined with a

soil-adjusted vegetation index (SAVI) layer calculated from

the scene mosaic to minimize shadow effects on subsequent

classification. The SAVI is similar to the frequently used

Fig. 2. Texture image of the study region derived from calculating pixel variance using a 3� 3 moving window [Eqs. (2) and (3) in text]. Regions of high edge

density (urbanized areas) appear bright, whereas regions of low edge density (agricultural fields, undeveloped areas) appear dark. Note that natural linear

features such as river channels and large rock outcrops are accentuated by the variance texture calculation, but the values of these features are generally

intermediate between urban and homogeneous regions.
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Normalized Difference Vegetation Index (NDVI) but

includes an additional factor to account for soil reflectance

such that one obtains [Eq. (1)]:

SAVI ¼ ðNIR� VISredÞ
ðNIRþ VISredþ LÞ

� �
ð1þ LÞ; ð1Þ

where NIR (near infrared) = Band 4; VISred (visible

red) = Band 3; and L, designed to correct for the soil

reflectance component of energy detected by the sensor, is

equal to 0.5 (Huete, 1988). As the SAVI is a band ratio,

shadow effects are removed in the resulting grayscale

image. The resulting seven-band image (VSWIR Bands

1–5 and 7 plus the SAVI for shadow correction) was

used as the baseline dataset for generation of an initial

land cover classification. Additional datasets used as input

into the expert system were a texture image derived from

the TM mosaic and several vector coverages for the study

region (land use, water rights data, city boundaries, and

reservation boundaries). All coverages were georeferenced

to the NAD27, UTM Zone 12 coordinate system and

converted to raster images (resampled to the 28.5-m/pixel

TM spatial resolution). As it is necessary to understand

the nature and potential errors associated with each of

these data sources, a brief description of each is presented

as follows.

2.2. Texture analysis

The study area is comprised of urbanized, undisturbed,

and agricultural regions. These different types of land uses

have distinct spatial edge frequencies or texture that can be

used as input into classification algorithms (Berberoglu et

al., 2000; Gong & Howarth, 1990; Iron & Petersen, 1981;

Stuckens et al., 2000). Urban areas typically have significant

texture resulting from buildings and street grids, whereas

homogeneous areas such as agricultural fields have little to

no texture (Fig. 2). Texture values were calculated from the

Fig. 3. Several ancillary datasets were used as inputs into the expert system classification. These datasets include land use (A), city boundaries (B), water rights

(C), and reservation boundaries (D). Land use data were obtained from the Maricopa Association of Governments, city and reservation boundary data were

obtained from the Arizona Land Resource Information System, and water rights data were obtained from the Arizona Department of Water Resources. All

datasets were georeferenced to the NAD27, UTM Zone 12 coordinate system. Area of coverage is the same as Fig. 2.
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TM base data using a 3� 3 moving window and the

variance [V; Eq. (2)]:

V ¼
X ðxij �MÞ2

n� 1
ð2Þ

where xij =DN value of pixel (i,j); n = number of pixels in

moving window; and M is the mean value of the moving

window (ERDAS, 1999) and defined as [Eq. (3)]:

M ¼
P

xij

n
ð3Þ

2.3. Land use

Land use information for the study site was obtained

as a vector polygon coverage from the Maricopa

Association of Governments (1995). Twenty-four classes

are defined in this coverage and include residential,

industrial, commercial, agricultural, and natural (undis-

turbed) land uses. The land use data were collected

during 1995 and were compiled using site visits, aerial

photography, and survey questionnaires sent to commer-

cial and industrial properties. Reported spatial accuracy

of the dataset is ±� 6 m in developed areas and

±� 61 m in rural and undeveloped areas (J. Fry,

personal communication).

Land cover types, present in several different land use

categories, can cause interpretive difficulties for users of

classified data. For example, a vegetation land cover class

based on surficial reflectance properties may correspond to

residential, vacant, recreational open space, or agricultural

land use types. Land use data can also be useful in

reclassifying pixels misclassified due to subpixel mixing

and edge effects. For example, pixels with a vegetation

classification can be reclassified as agricultural vegetation

using land use data.

2.4. Water rights

Vegetation abundance (derived from TM data) combined

with surficial water rights data can provide accurate classi-

fication of active and fallow agricultural regions. The Ari-

zona Department of Water Resources (ADWR) maintains a

Fig. 3 (continued).
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database of surface water rights in the study area. This

database was first constructed in 1980 using deeds, aerial

photography, county assessor data, and field sketches that

were subsequently digitized using a GIS. The State of

Arizona Groundwater Management Act of 1980 enacted a

moratorium on the issuance of new water rights. This limits

changes in the database to transferal or abandonment of

water rights (usually agricultural) to other land uses such as

residential development. The unidirectional change from

agricultural to nonagricultural water rights insures that the

expert system model is applicable to additional TM data for

the study area collected subsequent to 1980.

2.5. City and reservation boundaries

Information on incorporated city boundaries and the

locations of Native American reservations were necessary

due to spatial gaps in some of the other ancillary datasets.

For example, the water use database does not include Native

American reservation lands. This led to significant misclas-

sification of cultivated vegetation and compacted soil areas

(that were prior agricultural fields) in these regions. Vector

data for the city and reservation boundaries [derived from

Topographically Integrated Geographic Encoding Reference

(TIGER) information] were obtained from the Arizona Land

Resource Information System (ALRIS, 1999). Examples of

the vector coverages used in the expert system classification

are illustrated in Fig. 3.

2.6. Initial image classification

The present work is an expansion of a pilot study for

the east-central Phoenix and Tempe, AZ urban area

performed for the CAP LTER project (Ramsey et al.,

1999). The results of this pilot study indicated that several

key land cover classes (such as river gravels and asphalt)

were confused due to the spectral similarity of these

classes (Fig. 4). The number of land cover classes used

in the initial pilot study (27) was reduced to eight major

classes to reduce misclassification (Table 1). A hard

classification of the TM data was then performed using

a maximum likelihood decision rule (Jensen, 1996).

Bayesian coefficients (weighting factors that reflect the

probability of occurrence for a given class in the scene)

used in the maximum likelihood classification are pre-

sented in Table 1. Lower probabilities were assigned to

classes that demonstrated higher degrees of confusion with

other, more spatially extensive classes within the scene.

These values were somewhat arbitrarily determined based

on qualitative estimation of the area each class occupied

within the study region.

The initial land cover classes were selected on the basis

of spectral separability in TM data and usefulness to the

CAP LTER research objectives. Training regions for the

land cover classes were determined using ancillary geo-

logical, land use, and field data. Each training region

consisted of at least 70 image pixels to satisfy the 10 n

Table 1

Maximum likelihood rule initial land cover classes

Class Bayesian coefficient

Vegetation 1.0

Undisturbed 1.0

Water 1.0

Disturbed (mesic residential materials) 1.0

Disturbed (xeric residential materials) 1.0

Disturbed (commercial/industrial materials) 0.25

Disturbed (asphalt + concrete) 0.25

Disturbed (compacted soil) 0.50

Fig. 4. Land cover classes with significant spectral overlap can be difficult to classify accurately using traditional hard decision rules such as minimum distance

or maximum likelihood. For example, asphalt and river gravels within the study region exhibit similar spectral reflectance. The heavy solid line represents the

mean reflectance spectrum of 10 randomly selected asphalt-dominated pixels, with the minimum and maximum reflectance envelope represented by thin solid

lines. The heavy dashed line represents the mean reflectance spectrum of 10 randomly selected river gravel-dominated pixels, with the minimum and maximum

reflectance envelope represented by thin dashed lines. TM Band 6 is comprised of SAVI values.
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criterion, where n= number of bands used for the classifi-

cation (Congalton & Green, 1999). Multiple training regions

were selected for each class and then merged to ensure a

Gaussian distribution of pixel values necessary for applica-

tion of the maximum likelihood decision rule. Training

region statistics were calculated for each class and are

presented in Table 2.

2.7. Expert system classification

An expert system classification model was constructed

using the ERDAS Imagine image-processing software. The

primary motivation behind using the expert system was to

reclassify the initial maximum likelihood classification and

reduce errors of omission and commission. Use of the expert

system also allowed for the assignment of four additional

land cover classes [cultivated vegetation, cultivated grass,

fluvial and lacustrine sediments (canals), and compacted soil

(prior agricultural use)] to the eight classes used in the initial

land cover classification. Definitions of the expert system

classes are provided in Table 3.

Pixel classifications were determined using a hypothesis-

testing framework (Fig. 5). A typical hypothesis would be

that a given pixel is comprised of xeric residential materials.

For this hypothesis to be true (and for the pixel to receive

this classification), a number of conditional statements must

be true. For example, if the pixel was initially classified as

xeric residential material, and the pixel is not located within

an agricultural water right area, and it is not located within a

dedicated/nondevelopable area, and the pixel has a texture

value � 10, then the pixel is classified as xeric residential

material. The same approach can be used to reclassify pixels

that were initially misclassified. This would be the case if a

pixel was initially classified as mesic residential material,

however, it is located within a dedicated/nondevelopable

area and has a texture value < 10. Because of the latter two

criteria, the pixel is recoded to the undisturbed class.

3. Results

Initial classification efforts for the Phoenix metropolitan

area included a number of trials that varied base image type,

classification algorithm, and number of classes. Table 4

ranks these various trials on the basis of their overall

accuracy. Inspection of Table 4 indicates that the highest

overall classification accuracy (72%) is obtained using a

calibrated reflectance (with SAVI in place of the thermal TM

band) base image, fuzzy classification rule, and four general

classes (water, vegetation, impervious, and soil). It is clear

from the classification accuracy results presented in Table 4

that the best performance is obtained using fewer classes

and reflectance base data, while the worst performance is

obtained using multiple classes and band ratio data alone.

Table 2

Training region statistics for maximum likelihood classification

Disturbed

Water Undisturbed Vegetated Mesic residential Xeric residential Commercial/Industrial Asphalt Vacant

Pixels 23288 12782945 14402 1656 1215 10024 1302 4118

Reflectancea

Band 1 1.84 ± 0.30 11.88 ± 2.58 5.38 ± 1.93 10.21 ± 2.45 13.34 ± 2.74 14.98 ± 5.86 12.35 ± 3.34 11.37 ± 3.94

Band 2 3.26 ± 0.29 17.92 ± 3.66 8.78 ± 2.71 14.28 ± 2.99 17.82 ± 3.31 63.75 ± 19.84 16.29 ± 4.34 18.78 ± 5.87

Band 3 3.88 ± 0.43 28.86 ± 5.81 12.16 ± 5.02 18.97 ± 4.28 24.83 ± 4.56 28.18 ± 9.02 23.49 ± 5.59 32.82 ± 9.02

Band 4 2.23 ± 0.70 33.97 ± 4.91 34.94 ± 10.81 34.91 ± 3.78 31.30 ± 4.21 28.98 ± 8.10 21.76 ± 4.80 36.41 ± 9.15

Band 5 1.84 ± 0.84 43.87 ± 7.47 23.66 ± 5.20 27.29 ± 3.58 28.67 ± 4.24 30.77 ± 8.04 26.13 ± 4.73 43.71 ± 8.35

Band 6 23.48 ± 2.30 34.46 ± 1.50 46.87 ± 5.45 41.34 ± 2.99 35.46 ± 2.20 32.25 ± 3.10 30.52 ± 1.03 33.44 ± 0.78

Band 7 1.29 ± 1.00 38.39 ± 8.26 14.67 ± 4.44 20.52 ± 3.62 24.56 ± 4.54 29.67 ± 8.51 27.38 ± 5.39 40.45 ± 6.20

a Values are Mean Percent Reflectance ± 1s for TM Bands 1–5 and 7. Band 6 is SAVI calculated from TM reflectance values.

Table 3

Expert system class definitions

Class Properties

Cultivated vegetation Actively photosynthesizing vegetation, with agricultural water rights

Cultivated grass Actively photosynthesizing vegetation, in urban park areas

Vegetation Actively photosynthesizing vegetation

Fluvial and lacustrine sediments (canals) Mixed lithology gravels and soil associated with water transport features

Water Standing or flowing water

Undisturbed Undisturbed soil and native vegetation, bedrock outcrops

Compacted soil (prior agricultural use) Disturbed soil with agricultural water rights

Compacted soil Disturbed or bladed soil

Disturbed (commercial/industrial) Mixed asphalt, concrete, soil, vegetation, and building materials, dense spatial texture

Disturbed (asphalt and concrete) Mixed asphalt and concrete

Disturbed (mesic residential) Built materials, vegetation cover greater than bare soil; dense spatial texture

Disturbed (xeric residential) Built materials; vegetation cover less than bare soil; dense spatial texture
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The four highly generalized classes used in the most

accurate classifications (ranked 1–3 in Table 4) are too

broad to be useful for the majority of research objectives

associated with the CAP LTER or ASTER programs; there-

fore the expert system technique was developed to increase

the number of land cover classes while retaining high

classification accuracy.

Fig. 6 presents the land cover classification of the study

area produced using the expert system. Classification accu-

racy was assessed using a reference dataset of 981 randomly

selected points for which land cover was determined using a

1999 orthophoto mosaic georeferenced to the TM data. The

original TM data were also used in accuracy assessment to

avoid introducing errors into the reference dataset for

temporally sensitive classes (such as cultivated vegetation).

The expert system land cover classification was used to

generate 100 random validation points for each output class.

A 3� 3 moving window with a class majority rule was

passed over the output classification to determine validation

points. Validation pixels that fell within their own class

training regions were removed from the reference dataset.

Likewise, validation points that did not have pixel values

equal to the class under inspection (an artifact of the pixel

selection method) were discarded. This resulted in a range

of 70–100 validation points for each output class. Addi-

tional land cover data for the reference dataset were col-

lected by field verification of the classified image.

Both producer’s accuracy (the percentage of pixels

classified as a particular land cover that actually are that

land cover) and user’s accuracy (the percentage of reference

pixels for a given land cover that are correctly classified) are

generally reported. User’s accuracy is the more relevant

measure of the classification’s actual utility in the field.

Additional information regarding the error matrix can be

obtained using a k analysis that incorporates measures of the

omission and commission errors to obtain accuracy values

(Jensen, 1996). Producer’s, user’s, and overall accuracy

(and corresponding k analysis values) of the classification

were calculated using an error matrix (Congalton & Green,

1999). The results of the accuracy assessment are presented

in Table 5.

4. Discussion

4.1. Classification of urban materials

The primary motivation for the construction and imple-

mentation of the expert system classification presented here

was to improve upon the performance of hard classifiers for

the study area. Application of commonly used algorithms

such as maximum likelihood and minimum distance did not

have encouraging results, with the best performance

obtained from classifications with a relatively small number

of general classes (59–72% overall accuracy; Table 4).

Whereas the use of a simple scheme incorporating gener-

alized classes (water, vegetation, soil, and impervious

materials) is useful for first-order comparisons between

urban regions (Ridd, 1995), a greater level of land cover

discrimination is required for detailed analyses of urban

ecosystem processes.

One of the major confounding factors contributing to

poor classification accuracy in urban regions is the high

degree of heterogeneity and subpixel mixing of surficial

Fig. 5. An expert system was constructed to recode the initial maximum

likelihood classification using the additional information provided by the

vector coverages. In this example, schematic diagram white boxes represent

the hypothesis being tested, white ellipses represent the conjunctive

decision rules, and gray boxes represent the variables used (defined as pixel

values for the specific data layer) to test the hypothesis. Multiple branches

connected to hypotheses indicate exclusive conditional statements.

Table 4

Initial classification trial results

Classification rule Base dataa No. of classes Overall accuracy (%) Overall k (%) Rankb

Fuzzy classification VSWIR 4 71.56 53 1

Maximum likelihood VSWIR 4 69.97 50 2

Minimum distance Ratio 4 58.82 34 3

Maximum likelihood VSWIR 8 57.89 43 4

Fuzzy classification VSWIR 8 56.97 43 5

Maximum likelihood Ratio 27 23.53 17 6

a Ratio base data are a three-band image derived from TM reflectance: R-(5/7), G-(5/1), B-[(5/4)(3/4)]. VSWIR base data are TM Bands 1–5 and 7 with

SAVI index in place of the thermal band (Band 6).
b Rank is based on overall accuracy and ranges from one (highest) to six (lowest).
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materials at the scale of a Landsat image pixel (Foody,

2000). For example, it is not uncommon for xeric and mesic

residential properties to be directly adjacent to each other

within the same subdivision in the Phoenix metropolitan

area. These residences may also be bordered by a commer-

cial strip center that utilizes similar building and landscap-

Table 5

Accuracy assessment for expert system classification

Class Reference totals Classified totals No. correct Producer’s accuracy (%) User’s accuracy (%) k (%)

Cultivated vegetation 99 99 93 93.94 93.94 93.26

Cultivated grass 77 78 76 98.70 97.44 97.22

Fluvial and lacustrine sediments (canals) 77 88 72 93.51 81.82 80.27

Compacted soil (prior agricultural use) 81 84 71 87.65 84.52 83.13

Vegetation 80 84 61 76.25 72.62 70.19

Disturbed (commercial/industrial) 54 71 35 64.81 49.30 46.34

Disturbed (asphalt and concrete) 67 71 61 91.04 85.92 84.88

Undisturbed 101 95 86 85.15 90.53 89.44

Compacted soil 110 87 83 75.45 95.40 94.82

Disturbed (mesic residential) 70 72 59 84.29 81.94 80.56

Disturbed (xeric residential) 86 74 62 72.09 83.78 82.23

Water 79 78 77 97.47 98.72 98.61

Totals 981 981 836

Overall classification accuracy = 85.22%

Overall k statistics = .8385

Fig. 6. Recoding the initial maximum likelihood classification using the expert decision rules and ancillary datasets produced the final land cover classification.

Use of the expert system also enabled the addition of four new land cover classes to the initial classification [cultivated vegetation, cultivated grass, compacted

soil (prior agricultural use) and fluvial and lacustrine sediments (canals)]. Producer’s, user’s, and overall accuracies (and k coefficients) for the expert system

classification are presented in Table 5.
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ing materials (and is therefore spectrally similar). An addi-

tional level of complexity may also be present if both the

residences and the commercial center use locally derived

raw materials (river gravels for example) as landscaping

cover. The latter example is illustrated by comparison of

image reflectance spectra obtained from asphalt and river

gravels located within the study area (Fig. 4). Road-grade

asphalt usually contains approximately 95% aggregate com-

prised of sand- to gravel-sized minerals and rocks (Brown,

McRae, & Crawley, 1989). This suggests that the two land

covers would appear very similar spectrally to the TM

sensor, and indeed, these two classes were highly confused

using simple hard classifiers.

Some variability between intraclass training region

reflectance signatures is evident from the standard devi-

ations of the merged class means presented in Table 2.

In such cases, it is preferable to use the individual

intraclass training region signatures for classification

rather than a merged signature. Application of the

maximum likelihood decision rule to these intraclass

training regions was precluded, however, as a Gaussian

distribution of pixel values was not achieved (particu-

larly for the disturbed classes). This is due to the small

number of pixels available to define individual intraclass

training regions for disturbed classes within the study

area. Use of higher resolution, remotely sensed data

could help to alleviate this difficulty by allowing the

definition of ‘‘pure’’ training regions in urban areas with

more robust statistics.

Inspection of the class training region means and

standard deviations used in the initial maximum like-

lihood classification therefore reflect both subpixel mix-

ing and merging of intraclass training regions (Table 2).

Classes such as water and vegetation have well-defined

band reflectance means that have relatively little overlap.

However, this is not the case for the other classes that

exhibit similar class mean reflectance values and stand-

ard deviations (disturbed xeric and mesic residential).

This similarity of band reflectance values in the TM

bandpasses indicates that considerable confusion between

classes is inevitable using the spectral information alone.

One approach to solving this problem was to employ a

fuzzy classification algorithm. Fuzzy classifiers rank the

probability of a given pixel’s membership to defined

classes (Foody, 2000). These rankings then can be used

to generate a classification based on the most likely

class a given pixel belongs to. Application of a fuzzy

classifier to the study area improved accuracy somewhat

using a four-class scheme, but did not significantly

improve the overall accuracy of the eight-class scheme

(Table 4). The degree of spectral overlap between classes

evident in Table 2 indicates that similar distance rank-

ings will be obtained for the majority of image pixels.

Use of a fuzzy classification algorithm alone does not,

therefore, provide a significant improvement in classifi-

cation accuracy for the study area.

4.2. Incorporation of TM and ancillary data in the expert

system model

The expert system was constructed to assign the greatest

weight to the spectral information contained in the TM data

(as represented by the initial classification results). This was

done to maximize the temporal insensitivity of the model, as

well as to minimize errors inherent in some of the ancillary

data (such as the land use dataset). Additional information

useful in class discrimination was provided by the replace-

ment of the 120 m/pixel thermal infrared TM band with a

vegetation index (Vogelmann et al., 1998). The spectral

signature of vegetation in semiarid to arid environments

tends to be dominated by soil reflectance, therefore the

SAVI was chosen as being most appropriate for the con-

ditions (Huete, 1988). Use of a band ratio such as SAVI also

helped to alleviate shadow effects caused by topographic

variations within the TM subscene.

Spatial texture derived from the TM subscene was

included in the expert system as an additional postclassifi-

cation variable. Regions with little to no texture (corre-

sponding to alluvial fans, soil-mantled hill slopes,

agricultural fields, and river channels) had pixel values less

than 10 DN. Areas of intermediate to high texture (pixel

values� 10 DN) included natural (jointed outcrops, river

channel banks, etc.) and man-made linear features (canals,

roadways, etc.), as well as dense urban features such as

residential, commercial, and industrial areas. These thresh-

old DN values were determined by detailed inspection of

texture image pixels corresponding to the land cover types

of interest. These results are similar to those obtained by

Gong and Howarth (1990) and Stuckens et al. (2000) for

urban areas. The pixel resolution of the TM data precluded

finer discrimination of the urban classes, therefore the

texture information was used primarily to distinguish natural

from urbanized regions during postclassification sorting.

Incorporation of texture derived from higher resolution

datasets (such as orthorectified digital aerial photographs)

into the expert system might allow for greater discrimination

of urban land covers.

The remaining ancillary datasets (land use, water rights,

incorporated city and reservation boundaries) were all used

in a postclassification sorting mode to reclassify the original

maximum likelihood classification. The land use data were

used primarily to correct misclassification errors between

the undisturbed and urban classes caused by similar sub-

pixel land cover components (vegetation and gravelly soils

similar to desert landscaping). Land use data were also used

to define the cultivated grass class as this vegetation type

occurs mainly in golf courses and urban parks in the study

region. The parameters used to generate the land use

classification are in some cases not well constrained (J.

Fry, personal communication), therefore no class assign-

ments were made solely on the basis of the land use data.

Incorporated city and Native American reservation boun-

dary data were used primarily to distinguish urban from
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nonurban classes. Areas of high vegetation density within

reservation boundaries were observed to be in agricultural

use throughout the study area. The water rights database

does not extend to Native American reservations, so pixels

with high SAVI values and low spatial texture values were

reclassified as cultivated vegetation. Pixels within the res-

ervation boundaries that were initially classified as com-

pacted soil and had low spatial texture values were

reclassified as compacted soil (prior agricultural use).

The water rights database includes information on areas

that maintain active water use for agricultural purposes, as

well as other water uses such as mining. This information,

combined with vegetation density information (pixels clas-

sified as vegetation), allowed for reclassification of vege-

tated pixels as cultivated vegetation. An agricultural water

right exists whether or not a particular field is active or

fallow. Pixels originally classified as compacted soil were

reclassified as compacted soil (prior agricultural use), if they

were within an active agricultural water right area. The State

of Arizona Groundwater Management Act of 1980 pre-

cludes the creation of any additional agricultural water

rights from that time forward. Changes in water right status

between 1980 and the present are therefore limited to

conversion from agricultural to other nonagricultural uses.

The times and nature of water right conversions are recorded

at the ADWR, however, this historical information is not in

a form useable by the expert system. The data available in

GIS form from the ADWR reflect the current water rights

status only. Use of the expert system model with earlier TM

(or other sensor) data could potentially misclassify histor-

ically active and fallow agricultural regions as vegetation

and compacted soil (respectively), if water right conversion

took place after 1980. Strictly speaking, these classifications

would still be correct, however, the interpreted land use

would be incorrect.

4.3. Expert system results

Inspection of the accuracy assessment results presented in

Table 5 indicates that all classes, with the exception of

vegetation and disturbed (commercial/industrial), have user’s

accuracy and k values greater than 80%. These accuracy

values are in good agreement with previous uses of expert

class systems using TM data in urban regions (Greenberg &

Bradley, 1997; Harris & Ventura, 1995; Stuckens et al., 2000;

Vogelmann et al., 1998). The vegetation class has a user’s

accuracy of 72.62% (k = 70.19%), and the disturbed (com-

mercial/industrial) class has a user’s accuracy of 49.30%

(k = 46.34%). The vegetation class is defined primarily by

high SAVI values and high reflectance values in TM Band 4.

The SAVI was designed specifically for use in arid regions to

reduce the effect of soil reflectance on the vegetation sig-

nature (Huete, 1988). However, a high SAVI value may still

be calculated in areas of sparse vegetation cover and high soil

reflectance such as alluvial fans derived from silicic bedrock.

This can lead to confusion with other classes having similar

properties (such as the undisturbed class). Addition of

vegetation type and density information to the expert system

would help to reduce this error.

The disturbed (commercial/industrial) class exhibits the

worst performance of the classes used in the expert system.

The subpixel land cover components comprising this class

(Table 3) are also present in varying areal abundance within

all of the other urban land cover classes. This similarity of

subpixel land cover components leads to significant con-

fusion with other classes. Comparison of misclassified

pixels with the reference dataset and field data suggests that

the error is primarily one of commission. As noted previ-

ously, the Phoenix metropolitan region is characterized by

highly intermingled land cover types (both on the pixel and

subpixel level) that are difficult to distinguish solely on the

basis of reflectance spectra or spatial texture at TM reso-

lutions. Incorporation of land use or zoning information into

the expert system could improve the accuracy of the

disturbed (commercial/industrial) class with the potential

risk of introducing temporal and/or actual error (i.e. land

zoned as residential that is undisturbed desert at the time of

data acquisition).

5. Conclusions

The primary objective of the present work was to

produce a useable classification of land cover types for

the CAP LTER project and develop a methodology for

similar studies at other urban centers around the world

using ASTER. An expert system approach was used to

meet this goal. Expert systems have been used to

classify land cover in temperate urban centers, but this

is perhaps the first such application of the method to

a semiarid–arid urban center. Initial classification of

the Phoenix, AZ metropolitan study area was per-

formed using VSWIR band reflectance of 1998 Land-

sat TM data and SAVI values derived from the same

dataset. Spatial texture was also calculated from the

TM data and combined with ancillary datasets in the

expert system to perform postclassification sorting of

the initial land cover classification. Overall classifica-

tion accuracy obtained using the expert system was

85%. Individual class user’s accuracy ranged from 73–

99%, with the exception of the disturbed (commercial/

industrial) class (49%). The poor performance of this

class is due to confusion with other classes stemming

from the similarity of subpixel components at the scale

of a TM pixel. The generally high user accuracies for

the individual land cover classes validate the use of

the expert system model approach for semiarid–arid

urban centers.

A major strength of the expert system approach is in its

flexibility with regard to data sources and potential for

application to diverse research questions. The methodology

described here will be used to monitor future land cover

W.L. Stefanov et al. / Remote Sensing of Environment 77 (2001) 173–185 183



changes in the CAP LTER study area using ETM+ and

ASTER data. It will also be applied to ASTER data

collected for over 100 global urban centers. The inherent

flexibility of the expert system approach will allow both

the increased spectral resolution available from ASTER

and the varying amount of ancillary information available

for each urban center to be used for land cover classifica-

tion and monitoring.
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