Measuring Trace Gases and Aerosols in the Atmosphere Week #5: September 24, 2025

I. Guest Lecture

- Dr. Jean-Francois Smekens
 - Assistant Research Professor, Northern Arizona University
- some concepts introduced here will be explained in detail later in the regular class lecture, so do not feel overwhelmed by the topic
- try to focus on the important points and summary slides

II. Gases and Aerosols in Volcanic Plumes

- composition
 - Gases: H₂O, CO₂, SO₂, H₂S, HF, HBr
 - Aerosols: sulfates (H₂SO₄), halogens (Cl-, F-, Br-, etc.)
 - Vehicle for trace metals (e.g., Cu, Zn, Hg, As, Pb)
 - Silicate ash
- Atmospheric impacts
 - o Tropospheric: health hazards on local and regional scales
 - Stratospheric: Radiative forcing
- Physical volcanology
 - Reflect conditions in the subsurface
- Measurement techniques
 - o Remote sensing (mature plumes): e.g., satellite (IR, UV, VIS), weather radars
 - Direct sampling (near-source): e.g., filter packs, particle counters

III. Principles: Absorption Spectroscopy

Beer-Lambert law

$$A = \varepsilon c l = -ln \frac{I(\lambda)}{I_0(\lambda)}$$

- A = absorbance
- \circ ε = molar absorptivity
- \circ c = concentration
- *l* = pathlength
- o $I(\lambda)$ = radiation intensity at wavelength λ
- · Source of radiation: backscattered/reflected sunlight
 - Important factors:
 - Incident radiation (solar zenith angle)
 - > Surface reflectance
 - Vertical distribution of target gas
 - o Features: electronic transitions

- Source of radiation: emitted directly from ground
 - Important factors:
 - Surface Temperature
 - Surface Emissivity
 - Vertical distribution of target gas
 - Features: vibrational/rotational modes

IV. Satellite Instruments: A synoptic view

- Large spatial scale datasets:
 - o Provide context to interpret ground-based localized measurements
 - Identify sources and sinks and estimate fluxes

- Contrast conditions in separate geographical areas
- This enables crucial capabilities
 - > Establish global and regional long-term trends (temporal and/or spatial)
 - Monitor evolution of large-scale events during times of crisis
 - Provide initial bounding conditions for forecast models
- Earth Observing fleet: Meteosat Third Generation (MTG)
 - Infrared Sounding Spectrometer (IRS)
 - First IR sounding instrument in GEO orbit
 - Full disc sounding every hour
 - Sentinel 4: UV-VIS-NIR spectrometer
 - > 8x8 km² spatial resolution
 - > 0.5 nm (UV-VIS) and 0.12 nm (NIR) spectral resolution
 - ➤ Designed to monitor tropospheric pollutants (e.g., O₃, NO₂, SO₂, HCHO)
 - Flexible Combined Imager (FCI)
 - VNIR imager (1 km pixel at nadir, 8 channels)
 - ➤ IR imager (2 km at nadir, 8 channels)
 - Full disc coverage every 10 mins
 - Europe RSS: 2.5 mins
 - Sounding instruments in GEO orbit will enable:
 - Hourly maps of pollutants retrieved with high accuracy
 - More representative global daily/monthly average maps, accounting for daily variability
 - Increasing the likelihood of capturing cloud-free scenes

V. Ground-based methods: imagers

- Low spectral resolution (multispectral filter imagers)
- Increased sampling frequency from static viewpoint
- Provides valuable contextual information
- Determination of plume velocity from time series
- Capture rapid variations of the emission rate close to the source
 - The SO₂-camera
 - 2 synchronized cameras
 - Detector: CCD / CMOS
 - 2 Bandpass filters: 310 & 330 nm
 - ➤ Image capture at < 1 Hz
 - Calibration using gas cells or co-located spectrometer

- Semeru, Indonesia example
 - o Notes:

- The SO₂-camera: validation of orbital data
 - o Ground-based measurements are often more sporadic
 - > Limited in temporal extent
 - Irregular sampling (instrument failure, maintenance)
 - They provide metrics that satellite data cannot:
 - High spatial resolution
 - > High sampling rate
 - > Emissions at the source
 - Finding appropriate metrics for validation
 - Integrating emission rates towards point measurements
 - Deriving emission rates from point measurements
 - ➤ Look at trends (e.g., fluxes) rather than instantaneous values

• The SO₂-camera: summary

- Quantitative retrieval of gas emission rates
 - SO₂ as a tracer of volcanic gases
 - Wind speed derived from images
- Disadvantages
 - ➤ Low spectral resolution → Errors from ash and/or aerosols
 - Needs good weather conditions
- Gradual changes in degassing magnitude over short periods (< 30 mins)
- Ideal for eruption monitoring
 - Provides hourly measures of degassing rates
 - Adaptable (partly) to changes in wind direction
 - 2-D data provides context for interpretation (e.g., ash/aerosols in the plume)

VI. Ground-based methods: point spectrometers

- High spectral resolution for precision retrieval
- Narrow field of view (single pixel spot)
- OP-FTIR: Composition of gases at the source
- UV DOAS: Cross-section (traverse) as plume passes overhead
- Sporadic monitoring of small to moderate emissions

OP-FTIR

- Fourier Transform Infrared (FTIR) spectrometers measure the intensity of radiation at wavelengths 1-50 μm
- Strong source of IR radiation (lamp, sun, lava!!)
- Wide range of target gases
- o Gas composition (gas ratios) rather than fluxes

Wide range of target gases

- Reykjanes peninsula, Iceland example
 - o Notes:

• OP-FTIR: summary

- o Quantitative retrieval of plume composition
 - > Many individual gases
 - > Detailed thermal properties of the gas
- Direct observation of primary aerosol formation
 - ➤ SO₂/SO₄²⁻ ratio controlled by plume temperature / explosivity at the vent
 - ➤ Rapid condensation of H2O aerosols
- Gradual changes in plume characteristics over short periods (< 30 mins)
- Ideal for eruption monitoring
 - ➤ Measure of aerosol input at the source (SO₂/SO₄²⁻) for atmospheric dispersion models
 - Linking changes in gas composition to other monitoring signals with similar sampling rates (e.g., seismic, deformation, thermal flux, etc.)